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a b s t r a c t

We introduce the Danos–Régnier category DR(M) of a linear inverse monoid M , as
a categorical description of geometries of interaction (GOI) inspired from the weight
algebra. The natural setting for GOI is that of a so-called weakly Cantorian linear
inverse monoid, in which case DR(M) is a kind of symmetrized version of the classical
Abramsky–Haghverdi–Scott construction of a weak linear category from a GOI situation.
It is well-known that GOI is perfectly suited to describe the multiplicative fragment of
linear logic, and indeed DR(M) will be a ∗-autonomous category in this case. It is also
well-known that the categorical interpretation of the other linear connectives conflicts
with GOI interpretations. We make this precise, and show that DR(M) has no terminal
object, no Cartesian product of any two objects, and no exponential—whatever M is,
unless M is trivial. However, a form of coherence completion of DR(M) à la Hu–Joyal
(which for additives resembles a layered approach à la Hughes–van Glabbeek), provides
a model of full classical linear logic, as soon as M is weakly Cantorian. One finally notes
that Girard’s notion of coherence is pervasive, and instrumental in every aspect of this
work.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

There are bynowseveral families ofmodels for (classical) linear logic. One is the category of coherence spaces [17]. Another
is given by gamemodels, e.g. [4]. Contrarily to what onemight expect, geometry of interaction, in whatever form [14–16,19]
does not yieldmodels of linear logic. Now, bymodel of linear logic we are rather demanding, andmean a denotational, in fact
a categoricalmodel. The definition of categorical models of linear logic took some time to emerge, and is certainly posterior
to geometry of interaction.We shall consider linear categories [7], LNL categories [6], Lafont and new-Lafont categories [27].
It is remarkable that coherence spaces form a model in all these senses, but most proposals based on games or geometry
of interaction do not. The point is subtle: e.g., Baillot et al. [4] show that AJM games are a model of MELL proof nets (i.e.,
without the additives) without box erasure steps. Some more recent game semantics, such as Melliès’ asynchronous games
[28], do provide a categorical model of linear logic.
In a sense, there are categorical models of a domain-theoretic style, but only a few coming from the interaction world,

and none from the geometry of interaction. This paper bridges the gap. Our main contribution is a categorical model of
full classical linear logic, including multiplicative, exponential and additive connectives, based on ideas from geometry of
interaction – specifically from Danos and Régnier [11,10] – and also using the notion of coherence completion [21]. So we
import from both interaction and domain theory. Coherence plays a fundamental role in both.
A word on the organization of this paper. First, we feel that some intuition about the roots of this work should be brought

forward, and we devote Section 2 to this. We introduce the concept of a linear inverse semigroup M in Section 3, and show
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in Section 4 how any such M gives rise to a category DR(M), which we call the Danos–Régnier category of M . We shall
also see that, provided M is weakly Cantorian, DR(M) is compact-closed. In particular, it is a model of the multiplicative
fragment MLL of linear logic. The purpose of Section 5 is to compare this construction to the G construction of Abramsky
et al. [1], a.k.a. Joyal et al.’s Int construction [23], the most prominent categorical interpretation of geometry of interaction.
On our way to obtaining a categorical model of the whole of linear logic, we shall then trip on a serious difficulty: we
shall show in Section 6 and Section 7 that there is no way to interpret any form of additive or exponential connective
in DR(M), whatever M . I.e., changing the languages of paths won’t help. Nonetheless, we show in Section 8 that a slight
modification of Hu and Joyal’s coherence completion [21] builds a Lafont category out of any ∗-autonomous category, i.e., a
model of full classical linear logic out of any model of just MLL . . ., and this is exactly what DR(M) provides, no more, no
less.
Anotherword on relatedwork.We shall discuss relatedwork throughout the paper, notably the construction of compact-

closed categories from tracedmonoidal categories [1,23] in Section 5, and coherence completions [21] in Section 8. The idea
of considering inverse monoids is credited to Yves Legrandgérard by Danos and Régnier [11]. As far as the impossibility
results mentioned in Sections 6 and 7 are concerned, it is well-known that trying to add specific new equations between
geometry of interaction tokens, aimed at enforcing some categorical identities, resulted in inconsistencies. Our impossibility
results are much stronger: we show that no change in the underlying inverse monoid M can result in the creation of any
instance of any missing categorical feature (additive, exponential).

2. Motivation

I came to study inverse monoids following Danos et al. [10], where weights from the so-called dynamic algebra arise
from an inverse monoid with some added structure (the bar , which captures the reduction process). However, my actual
initial goal was to try and understand how one may describe Böhm-like trees of λ-terms up to β- or βη-equivalence, not as
trees, but as collections of paths through these trees. (A goal I have not reached yet.)
Let us see what this means for trees. By tree we mean some form of infinite first order term: each node t is labeled by a

function symbol f of some arity n ∈ N, and has n successors t1, . . . , tn; we then agree to write t as f (t1, . . . , tn). We callΣ the
given signature, i.e., the set of all function symbols, together with their respective arities. We write f /n ∈ Σ to state that f
is inΣ , with arity n. With each such f /n inΣ , we associate n distinct letters f1, . . . , fn. (We need to adjust this when n = 0,
in all rigor.) This yields the path alphabet |A| =


f /n∈Σ {f1, . . . , fn}. Its elements are the path letters, and a path is any finite

sequence of path letters. Traveling down a tree along any route from the root yields a path in the obvious way. E.g., the tree
f (g(t1, t2), t3) has (at least) the paths ϵ (the empty path), f1, f1g1, f1g2, f2.
Going from a tree to its set of paths is easy. Recovering a tree from a given set of paths is harder. First, not every set of

paths arises from some tree, e.g., {f1, g1}. The key point to enable this reconstruction process is coherence. This was invented
under a different name by Harrison and Havel [20]. Define an equivalence relation ≡ on the path alphabet by fi ≡ gj iff
f = g . Now let ⌢

⌣ be the relation on paths such that w
⌢
⌣ w′ iff, for any strict common prefix w0 of w and w′, writing w as

w0aw1 andw′ asw0a′w′1 with a, a
′
∈ |A|, then a ≡ a′;⌢⌣ is reflexive and symmetric, though in general not transitive. When

w ⌢
⌣ w′, we say that w and w′ are coherent , and a clique is any set of pairwise coherent paths. Clearly, any set of paths of a

given tree is a clique. In general, a space X = (|X |, ⌢
⌣) where ⌢

⌣ is a reflexive and symmetric relation on |X | is a coherence
space [17]. So there is a coherence space of paths, (|A|∗, ⌢

⌣); this was explored by Reddy [31, Section 5.2]. Coherence spaces
form the basis of an elegant semantics of the λ-calculus, and in fact of all of linear logic [17].
Let us refine. Let ≤ be the prefix ordering on paths. Then w ≤ w′ and w′ ⌢

⌣ w′′ implies w ⌢
⌣ w′′: (|A|∗,≤, ⌢

⌣) is a bit
more than a coherence space, it is an event structure, i.e., a space X = (|X |,≤, ⌢

⌣) where ≤ is a partial ordering and ⌢
⌣ is a

reflexive and symmetric relation on |X | such that w ≤ w′ and w′ ⌢
⌣ w′′ implies w ⌢

⌣ w′′. Then the set of paths in a tree is
a down-closed clique, and conversely any down-closed clique is the set of paths of a unique tree (except that functions f /n
may have less than n subtrees).
Event structures are a fundamental model of concurrency [29], where, instead of using ⌢

⌣, a binary irreflexive and
symmetric relation # called conflict is used, such thatw ≤ w′ andw#w′′ impliesw′#w′′. (We have also ignored the axiom of
so-called finite causes here.) This is equivalent: take coherence ⌢

⌣ as negation of conflict #. The relationship between order
≤ and coherence ⌢

⌣ is explained, and generalized to so-called bistructures, by Curien et al. [9].
In the case of λ-terms, as opposed to infinite first-order terms, there is an extra difficulty in identifying termswith certain

cliques of paths: λ-terms reduce to other λ-terms, and we would like to define a notion of paths through λ-terms that is
invariant under βη-equivalence. The result will be a way to compute paths through the Böhm tree of t by just computing
paths through t itself—without reducing t . This is exactly what geometry of interaction is about. Girard’s execution formula
aims at being such an invariant. Our view is that such an invariant should be a denotational (categorical)model of λ-calculus,
and in fact of linear logic proofs.

3. Linear inverse semigroups

Such a calculus of paths for MLL terms is lurking around in [11,10], based on the notion of a (bar) inverse monoid. The
quantity that remains invariant through reduction is the set of all weights of paths through a proof net. But this cannot
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