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a b s t r a c t

New, simple, proofs of soundness (every representable function lies in a given complexity
class) for Elementary Affine Logic, LFPL and Soft Affine Logic are presented. The proofs are
obtained by instantiating a semantic framework previously introduced by the authors and
based on an innovativemodification of realizability. The proof is a notable simplification on
the original already semantic proof of soundness for the above mentioned logical systems
and programming languages. A new resultmade possible by the semantic framework is the
addition of polymorphism and a modality to LFPL, thus allowing for an internal definition
of inductive datatypes. The methodology presented proceeds by assigning both abstract
resource bounds in the form of elements from a resource monoid and resource-bounded
computations to proofs (respectively, programs).
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1. Introduction

Implicit computational complexity is an active research area lying in the intersection of logic and computer sciencewhose
goal is to characterize complexity classes as classes of functions or predicates definable in logical systems or lambda calculi. A
question that has attracted particular interest in the last two decades is how to tame systemswith higher order functions and
recursion so as to capture small complexity classes, polynomial time in particular. At least three different principles have
been used when characterizing complexity classes by languages with higher order functions, namely linear types [4,15],
restricted modalities in the context of linear logic [12,1,20] and non-size-increasing computation [16]. Although related
to each other, these systems have been studied with different, often unrelated methodologies and few results are known
about their relative intensional expressive power. By intensional expressive power wemean the ability to represent natural
algorithms as opposed to just extensionally capture classes of functions. We believe that this is one of the main reasons that
there has been relatively little progress towards the main challenge in the field, namely finding systems capturing small
complexity classes while being at the same time intensionally expressive.

In a recent paper [9], the authors introduced a new semantic framework based upon an innovative modification of
realizability. The main idea underlying the proposal consists in considering bounded-time algorithms as realizers instead of
taking plain TuringMachines as is usually the case in realizability constructions. Bounds are expressed abstractly as elements
of a resourcemonoid. Given a resourcemonoidM , the notions of a length space onM and of amorphism between length spaces
(onM) can both be defined. Noticeably, this is a symmetric monoidal closed category, independently ofM .

But our goal here is not limited to defining a new realizability model for certain logical systems or programming
languages. Given a (logical or type) system L, we define a model for L by choosing a resource monoid which is both:

• flexible enough to justify all the constructs or rules in L.
• restricted enough to induce proper bounds on the running time of the underlying realizers.

The model can then be used as a powerful tool for the analysis of the class of functions representable in L.
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Quite remarkably, second order multiplicative affine logic (MAL) can be interpreted in the presented framework,
independently on the underlying resource monoid. As a consequence, the flexibility requirement should only be checked
for constructs which are not in MAL.

A logical system (or a programming language) is said to be soundwith respect to a given complexity class iff the class of
functions which can be represented in the logical system is included in the complexity class. In [9], we presented proofs
of soundness theorems for the following systems: Light Affine Logic (LAL, [1]), Elementary Affine Logic (EAL, [6]), LFPL [16]
and Soft Affine Logic (SAL, [2]). The one in [9] was the first entirely semantic proof of polytime soundness for light logics,
providing a notable simplification on the original already semantic proof of polytime soundness for LFPL. On the other hand,
the resource monoids for LAL, EAL and SAL were complicated compared to the one for LFPL. The latter was a functional
monoid: elements of the carrier are pairs (n, f ), where n is a natural number and f is a function from natural numbers to
natural numbers boundedby apolynomial. The first threewere not functionalmodels and,more importantly, their definition
was complex; as a consequence, proof of soundness for LALwas relatively long and could not be presented in the extended
abstract [9].

In this paper, we introduce the semantic framework in full detail, togetherwith concrete instances for EAL, SAL and LFPL.
The three resource monoids are all functional. A companion paper by the authors [10] presents a new, simple, functional
model for LAL.

Related work. Realizability has been used in connection with resource-bounded computation in several places. The most
prominent is Cook and Urquhart’s work [5], where terms of a language called PVω are used to realize formulas of bounded
arithmetic. The contribution of that paper is related to ours in that realizability is used to show ‘‘polytime soundness’’ of a
logic. There are important differences though. First, realizers in Cook and Urquhart [5] are typed and very closely related to
the logic that is being realized. Second, the language of realizers PVω are termsof the simply-typed lambda calculus (endowed
with first order recursion) and is therefore useless for systems like LFPL or LAL. In contrast, we use untyped realizers and
interpret types as certain partial equivalence relations on those. This links our work to the untyped realizability model HEO
(due to Kreisel [19]). This, in turn, has also been done by Crossley et al. [8]. There, however, one proves externally that
untyped realizers (in this case of bounded arithmetic formulas) are polytime. In our work, and this happens for the first
time, the untyped realizers are used to give meaning to the logic and obtain polytime soundness as a corollary. Thus, certain
resource bounds are built into the untyped realizers by their very construction. Such a thing is not at all obvious, because
untyped universes of realizers tend to be Turing complete, due to definability of fixed-point combinators. We get around
this problem through our notion of a resource monoid and the addition of certain time bounds to Kleene applications of
realizers. Indeed, we consider this the main innovation of our paper and hope that it proves useful elsewhere. Similar ideas
were already present in some previous works by the second author [16,14,17]. The presented techniques, however, were
designed with one particular system in mind and could not be easily adapted to other systems. Our presentation style is
particularly similar to the one adopted in [17].

2. A computational model

In this paper, we adopt the lambda calculus [3] as the language of realizers. More precisely, realizers will be closed values
of the pure, untyped, weak and call-by-value lambda calculus. This section summarizes those properties of the calculus
which will be relevant in the rest of the paper. For more information, one can consult a recent paper by the first author and
Simone Martini [11].
Λ denotes the set of lambda terms, defined inductively as follows:

M,N ::= x | λx.M | MM

where x ranges over a denumerable set of variables. Given lambda terms M,N and a variable x, M{x/N} is the lambda term
obtained by substituting N for every free occurrence of x in M (see [3] for more details). The size |M| of a term M is defined
by induction on M: |x| = 1, |λx.M| = |M| + 1 and |MN| = |M| + |N|. Values are abstractions and variables. Capital letters
like V ,U,W range over values. We consider weak call-by-value reduction on lambda terms, i.e. we take → as the closure
of

(λx.M)V → M{x/V }

under all applicative contexts, i.e. reduction is governed by the following rules:

(λx.M)V → M{x/V }

M → N
ML → NL

M → N
LM → LN.

A realizer is simply a closed value, i.e. an abstraction without free occurrences of variables. Realizers are ranged over by
letters like e, f , g . L is the set of all realizers. The application {e}(f ) of two realizers is the normal form of ef relative to weak
call-by-value reduction (if such a normal form exists). Observe that {e}(f ), if it exists, is always a realizer.

B = {0, 1}∗ is the set of binary strings. Letters like s, t, u range over B. The mapΦ : B → L is defined by induction as
follows:

Φ(ε) = λx.λy.λz.z
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