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a b s t r a c t

B. Courcelle studied algebraic trees as precisely the solutions of all recursive program
schemes for a given signature in Set. He proved that the corresponding monad is iterative.
We generalize this to recursive program schemes over a given finitary endofunctor H of a
‘‘suitable’’ category. A monad is called second-order iterative if every guarded recursive
program scheme has a unique solution in it. We construct two second-order iterative
monads: one, called the second-order rationalmonad, SH , is proved to be the initial second-
order iterative monad. The other one, called the context-free monad, CH , is a quotient of
SH and in the original case of a polynomial endofunctor H of Set we prove that CH is the
monad studied by B. Courcelle. The question whether these two monads are equal is left
open.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recursive program schemes formalize the construction of new programs from the given ones by solving a recursive
system of second-order equations. Building on the classical work of Bruno Courcelle [11] we introduce, for every finitary
endofunctorH of a locally finitely presentable category, the context-freemonad CH ofH . In the casewhereH is the polynomial
endofunctor of a signature Σ in Set we prove that CH is Courcelle’s monad of algebraic trees, i.e., those Σ-trees that are
solutions of recursive program schemes. This monad CH is a quotient monad of the second-order rational monad SH defined
as the colimit of the diagram of all recursive program schemes. This is analogous to our previous construction of the rational
monad RH characterizing solutions of first-order recursive equations of type H; see [4]. In the case of a polynomial functor
H = HΣ on Set the monad RH is given by all rational Σ-trees, i.e., Σ-trees having (up to isomorphism) only a finite set of
subtrees; see [19].

Recall from [11] the language L(t) associated to every tree t: this is the language consisting of all words n1 . . . nkf where
n1 . . . nk is a word over ω denoting a path from the root of t to a node (of depth k), and f ∈ Σ is the label of that node.
The tree t is rational iff L(t) is a regular language, and, as proved in [13], the tree t is algebraic iff L(t) is a deterministic
context-free language. For this reason we call CH the context-free monad for H .

This paper is part of our research program to provide a new and conceptionally clear approach to algebraic semantics (see
e.g. [11,20]) which is a topic at the heart of theoretical computer science. In this new approach we use category theoretic
methods and tools instead of general algebraic ones. So in lieu of sets, signatures and trees we consider categories, functors,
final coalgebras and monads formed by them. Algebraic trees for a signature are a very important concept in classical
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algebraic semantics providing a semantic domain for uninterpreted solutions of recursive program schemes. So it is an
important question how algebraic trees can be captured in our more general category theoretic approach to algebraic
semantics, and we present the context-free monad as an answer. In addition, the move from signatures to endofunctors
also allows to extend the notion of recursive program scheme. So in our new semantics we can capture recursive equations
that the classical work cannot deal with; for example, equational laws between given operations of a program scheme may
be considered directly in our approach—this is discussed in [24].

Let us now explain the results of this paper a bit more in detail. Recall that a recursive program scheme (or rps for short)
defines new operations ϕ1, . . . , ϕk of given arities n1, . . . , nk recursively, using given operations represented by symbols
from a signature Σ . An rps is guarded if the right-hand sides of the equations have the leading symbol in Σ . Here is an
example:

ϕ(x) = f (x, ϕ(gx)) (1.1)

is a recursive program scheme defining a unary operation ϕ from the givens inΣ = { f , g } with f binary and g unary. Here
we are interested in the so-called uninterpreted semantics, which treats a recursive program scheme as a purely syntactic
construct, and so its solution is given byΣ-trees over the given variables. For example, the uninterpreted solution ofϕ above
is theΣ-tree
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(1.2)

(here we simply put the terms x, gx, ggx, etc. for the corresponding subtrees).
Observe that ifΦ = {ϕ1, . . . , ϕk } denotes the finite signature of the newly defined operations of arities ni and

HΦX = Xn1 + · · · + Xnk

is the corresponding polynomial endofunctor of Set, then algebras for HΦ are just the classical general algebras for the
signature Φ . We denote by FH the free monad on H , thus FHΦ is the monad of finite Φ-trees. A recursive program scheme
can be formalized as a natural transformation

e : HΦ → FHΣ+HΦ .

In fact, FHΣ+HΦ is the monad of all finite (Σ +Φ)-trees. Since Xni is a functor representable by ni, a natural transformation
from Xni into FHΣ+HΦ is, by the Yoneda Lemma, precisely an element of FHΣ+HΦ (ni), i.e., a finite (Σ+Φ)-tree on ni variables.
Thus, to give a natural transformation e as abovemeans precisely to give k equations, one for each operation symbol ϕi from
Φ ,

ϕi(x0, . . . , xn−1) = ti (i = 1, . . . , k) (1.3)

where ti is a (Σ + Φ)-term on { x0, . . . , xn−1 }. This is the definition of a recursive program scheme used in [11].
An uninterpreted solution of e : HΦ → FHΣ+Hϕ is a k-tuple of Σ-trees tĎ1 , . . . , t

Ď
k such that the above formal

equations (1.3) become identities under the simultaneous second-order substitution2 of ti for fi, for i = 1, . . . , k. For
example, the tree tĎ(x) from (1.2) satisfies the corresponding equality of trees

tĎ(x) = g(x, tĎ(fx)).

This concept of solutions was formalized in [24] by means of the free completely iterative monad TH on a functor H; in the
case H = HΣ this is the monad of all (finite and infinite)Σ-trees. We recall this in Section 2. The uninterpreted solution is
a natural transformation eĎ : HΦ → THΣ and this leads us to the following reformulation of the concept of an algebraic tree
of Courcelle [11]:

A Σ-tree is called algebraic if there exists a recursive program scheme (1.3) such that t = tĎ1 . (Every rational tree is
algebraic, and (1.2) shows an algebraic tree that is not rational.)

Courcelle proved that the monad CHΣ of all algebraic Σ-trees as a submonad of THΣ is iterative in the sense of Calvin
Elgot [12]. Furthermore, algebraic trees are closed under second-order substitution. In this paper we study, for general
finitary endofunctors H , solutions of recursive program schemes in an arbitrary H-pointed monad, i.e., a monad B together
with a natural transformation from H to B.

2 Recall that, in general, a simultaneous second-order substitution replaces in a tree over a signature Γ all operation symbols by trees over another
signature; see [11] for classical second-order substitution or [24] for a category theoretic description.
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