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ARTICLE INFO ABSTRACT

Keywords: B. Courcelle studied algebraic trees as precisely the solutions of all recursive program
Algebraic trees schemes for a given signature in Set. He proved that the corresponding monad is iterative.
Recursive program schemes We generalize this to recursive program schemes over a given finitary endofunctor H of a
Ideal theory _g .p g . g . y .
Monads “suitable” category. A monad is called second-order iterative if every guarded recursive
program scheme has a unique solution in it. We construct two second-order iterative
monads: one, called the second-order rational monad, S, is proved to be the initial second-
order iterative monad. The other one, called the context-free monad, C", is a quotient of
SH and in the original case of a polynomial endofunctor H of Set we prove that C is the
monad studied by B. Courcelle. The question whether these two monads are equal is left

open.
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1. Introduction

Recursive program schemes formalize the construction of new programs from the given ones by solving a recursive
system of second-order equations. Building on the classical work of Bruno Courcelle [11] we introduce, for every finitary
endofunctor H of a locally finitely presentable category, the context-free monad C* of H. In the case where H is the polynomial
endofunctor of a signature X in Set we prove that C" is Courcelle’s monad of algebraic trees, i.e., those X -trees that are
solutions of recursive program schemes. This monad C* is a quotient monad of the second-order rational monad S* defined
as the colimit of the diagram of all recursive program schemes. This is analogous to our previous construction of the rational
monad R characterizing solutions of first-order recursive equations of type H; see [4]. In the case of a polynomial functor
H = Hy on Set the monad R is given by all rational X-trees, i.e., X -trees having (up to isomorphism) only a finite set of
subtrees; see [19].

Recall from [11] the language L(t) associated to every tree t: this is the language consisting of all words n; . . . n,f where
ni...n is a word over w denoting a path from the root of t to a node (of depth k), and f € X' is the label of that node.
The tree ¢ is rational iff L(t) is a regular language, and, as proved in [13], the tree t is algebraic iff L(t) is a deterministic
context-free language. For this reason we call C" the context-free monad for H.

This paper is part of our research program to provide a new and conceptionally clear approach to algebraic semantics (see
e.g. [11,20]) which is a topic at the heart of theoretical computer science. In this new approach we use category theoretic
methods and tools instead of general algebraic ones. So in lieu of sets, signatures and trees we consider categories, functors,
final coalgebras and monads formed by them. Algebraic trees for a signature are a very important concept in classical
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algebraic semantics providing a semantic domain for uninterpreted solutions of recursive program schemes. So it is an
important question how algebraic trees can be captured in our more general category theoretic approach to algebraic
semantics, and we present the context-free monad as an answer. In addition, the move from signatures to endofunctors
also allows to extend the notion of recursive program scheme. So in our new semantics we can capture recursive equations
that the classical work cannot deal with; for example, equational laws between given operations of a program scheme may
be considered directly in our approach—this is discussed in [24].

Let us now explain the results of this paper a bit more in detail. Recall that a recursive program scheme (or rps for short)
defines new operations ¢1, .. ., ¢ of given arities nq, ..., n, recursively, using given operations represented by symbols
from a signature X. An rps is guarded if the right-hand sides of the equations have the leading symbol in X. Here is an
example:

o) = f(x, p(gx)) (1.1)

is a recursive program scheme defining a unary operation ¢ from the givens in ¥ = {f, g } with f binary and g unary. Here
we are interested in the so-called uninterpreted semantics, which treats a recursive program scheme as a purely syntactic
construct, and so its solution is given by X'-trees over the given variables. For example, the uninterpreted solution of ¢ above
is the X'-tree

f
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(here we simply put the terms x, gx, ggx, etc. for the corresponding subtrees).
Observe that if @ = { ¢4, ..., ¢ } denotes the finite signature of the newly defined operations of arities n; and

HeX = X" 4 ... 4+ X™

is the corresponding polynomial endofunctor of Set, then algebras for Hg are just the classical general algebras for the
signature ®. We denote by F" the free monad on H, thus F® is the monad of finite ®-trees. A recursive program scheme
can be formalized as a natural transformation

e:Hp — FlztHo,

In fact, F=tHe is the monad of all finite (X + ®)-trees. Since X" is a functor representable by n;, a natural transformation
from X" into F=tHe is by the Yoneda Lemma, precisely an element of F=tHe (n;), i.e., a finite (X + & )-tree on n; variables.
Thus, to give a natural transformation e as above means precisely to give k equations, one for each operation symbol ¢; from
P,

(/),’(Xo,...,XH,O =t (l: 1,...,]() (13)
where t;isa (X + @)-termon { xo, . . ., X,—1 }. This is the definition of a recursive program scheme used in [11].

An uninterpreted solution of e : Hy — FM=tHe is a k-tuple of X-trees tT, el t,j such that the above formal

equations (1.3) become identities under the simultaneous second-order substitution® of t; for f;, fori = 1, ..., k. For

example, the tree tf(x) from (1.2) satisfies the corresponding equality of trees
thx) =g, t'(fx).

This concept of solutions was formalized in [24] by means of the free completely iterative monad T on a functor H; in the
case H = Hy this is the monad of all (finite and infinite) X'-trees. We recall this in Section 2. The uninterpreted solution is
a natural transformation e’ : H, — T"= and this leads us to the following reformulation of the concept of an algebraic tree
of Courcelle [11]:

A X-tree is called algebraic if there exists a recursive program scheme (1.3) such that t = t;f . (Every rational tree is
algebraic, and (1.2) shows an algebraic tree that is not rational.)

Courcelle proved that the monad C"= of all algebraic X -trees as a submonad of TH~ is iterative in the sense of Calvin
Elgot [12]. Furthermore, algebraic trees are closed under second-order substitution. In this paper we study, for general
finitary endofunctors H, solutions of recursive program schemes in an arbitrary H-pointed monad, i.e., a monad B together
with a natural transformation from H to B.

2 Recall that, in general, a simultaneous second-order substitution replaces in a tree over a signature I" all operation symbols by trees over another
signature; see [11] for classical second-order substitution or [24] for a category theoretic description.
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