
Theoretical Computer Science 348 (2005) 3–14
www.elsevier.com/locate/tcs

Sequential sampling techniques for algorithmic learning theory
Osamu Watanabe

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan

Abstract

A sequential sampling algorithm or adaptive sampling algorithm is a sampling algorithm that obtains instances sequentially one
by one and determines from these instances whether it has already seen enough number of instances for achieving a given task. In
this paper, we present two typical sequential sampling algorithms. By using simple estimation problems for our example, we explain
when and how to use such sampling algorithms for designing adaptive learning algorithms.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Sequential sampling; Adaptive sampling; Adaptive learning algorithm; Chernoff bound; Hoeffding bound

1. Introduction

Random sampling is an important technique in computer science for developing efficient randomized algorithms.
A task such as estimating the proportion of instances with a certain property in a given data set can often be achieved
by randomly sampling a relatively small number of instances. Sample size, i.e., the number of sampled instances,
is a key factor for sampling, and for determining appropriate sample size, so-called concentration bounds or large
deviation bounds have been used (see, e.g., [9]). In particular, the Chernoff bound [2] and the Hoeffding bound [14]
have been used commonly in theoretical computer science because they derive a theoretically guaranteed sample size
sufficient for achieving a given task with given accuracy and confidence. There are some cases, however, where these
bounds can provide us with only overestimated or even unrealistic sample size. In this paper, we show that “sequential
sampling algorithms” are applicable for some of such cases to design adaptive randomized algorithms with theoretically
guaranteed performance.

A sequential sampling algorithm or adaptive sampling algorithm is a sampling algorithm that obtains instances
sequentially one by one and determines from these instances whether it has already seen enough number of instances
for achieving a given task. Intuitively, from the instances seen so far, we can more or less obtain some knowledge on
the input data set, and it may be possible to estimate an appropriate sample size. Recently, we have proposed [7,8] a
sequential sampling algorithm for a general hypothesis selection problem (see also [6] for some preliminary versions).
Our main motivation was to scale up various known learning algorithms for practical applications such as data mining
(see, e.g., discussions in [8]). While some applications and extensions of our approach towards this direction have
been reported [1,4,20], it has been also noticed [3,5] that sequential sampling allows us to add “adaptivity” to learning
algorithms while keeping their worst-case performance. In this paper, we use some simple examples and explain when
and how to use sequential sampling for designing such adaptive learning algorithms.

E-mail address: watanabe@is.titech.ac.jp.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.09.003

http://www.elsevier.com/locate/tcs
mailto:watanabe@is.titech.ac.jp

4 O. Watanabe / Theoretical Computer Science 348 (2005) 3 –14

The idea of “sampling on-line” is quite natural, and it has been studied in various contexts. First of all, statisticians
made significant accomplishments on sequential sampling during World War II [21]. In fact, from their activities,
a research area on sequential sampling—sequential analysis—has been formed in statistics. Thus, it may be quite
likely that some of the algorithms explained here have been already found in their contexts. (For recent studies on
sequential analysis, see, e.g., [10,11].) In computer science, sequential sampling techniques have been studied in the
database community. Lipton and Naughton [17] and Lipton et al. [16] proposed adaptive sampling algorithms for
estimating query size in relational databases. Later Haas and Swami [13] proposed an algorithm that performs better
than the Lipton–Naughton algorithm in some situations. More recently, Lynch [18] gave a rigorous analysis to the
Lipton–Naughton algorithm. Roughly speaking, the spirit of sequential sampling is to use instances observed so far for
reducing a current and future computational task. This spirit can be found in some of the learning algorithms proposed
in machine learning community. For example, the Hoeffding race proposed by Maron and Moore [19] attempts to
reduce a search space by removing candidates that are determined hopeless from the instances seen so far. A more
general sequential local search has been proposed by Greiner [12].

All the above approaches more or less share the same motivation. That is, they attempt to design “adaptive algorithms”
that can make use of the advantage of the situation to reduce sample size (or in general, computation time) whenever
such reduction is indeed possible. We believe that some of these approaches can be formally discussed so that we can
propose adaptive learning algorithms with theoretically guaranteed performance.

This paper has some overlap with the author’s previous survey paper on sequential sampling [22].

2. Our problem and statistical bounds

In this paper, we fix one simple estimation problem for our basic example, and discuss sampling techniques on this
problem or its variations. Let us specify our problem. Let D be an input data set; here it is simply a set of instances.
Let B be a Boolean function defined on instances in D. That is, for any x ∈ D, B(x) takes either 0 or 1. Our problem is
to estimate the probability pB that B(x) = 1 when x is given at random from D; in other words, the ratio of instances
x in D such that B(x) = 1 holds.

Clearly, the probability pB can be computed by counting the number of instances x in D for which B(x) = 1 holds.
In fact, this is only the way if we are asked to compute pB exactly. But we consider the situation where D is huge
and it is impractical to go through all instances of D for computing pB . A natural strategy that we can take in such
a situation is random sampling. That is, we pick up some instances of D randomly and estimate the probability pB

on these selected instances. Without seeing all instances, we cannot hope for computing the exact value of pB . Also
due to the “randomness”, we cannot always obtain a desired answer. Therefore, we must be satisfied if our sampling
algorithm yields a good approximation of pB with reasonable probability. In this paper, we will discuss this type of
approximate estimation problem.

Our estimation problem is completely specified by fixing an “approximation goal” that defines the notion of
“good approximation”. We consider the following one for our first approximation goal. (In the following, we will
use p̃B to denote the output of a sampling algorithm (for estimating pB); thus, it is a random variable and the proba-
bility below is taken w.r.t. this random variable.)

Approximation Goal 1 (Absolute error bound). For given � > 0 and �, 0 < � < 1, the goal is to have

Pr[|p̃B − pB |��] > 1− �. (1)

As mentioned above, the simplest sampling algorithm for estimating pB is to pick up instances of D randomly and
estimate the probability pB on these selected instances. Fig. 1 gives the precise description of this simplest sampling
algorithm, which we call Batch Sampling algorithm. Here the only assumption we need (for using the statistical bounds
explained below) is that we can easily pick up instances from D uniformly at random and independently.

The description of Batch Sampling algorithm of Fig. 1 is still incomplete since we have not specified the way to
determine n, the number of iterations or sample size. Of course, to get an accurate estimation, the larger the n the better;
on the other hand, for the efficiency, the smaller the n the better. We would like to achieve a given accuracy with as
small sample size as possible.

Download	English	Version:

https://daneshyari.com/en/article/10334722

Download	Persian	Version:

https://daneshyari.com/article/10334722

Daneshyari.com

https://daneshyari.com/en/article/10334722
https://daneshyari.com/article/10334722
https://daneshyari.com/

