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h i g h l i g h t s

• A method hybridizing augmented Lagrangian multiplier and differential evolution algorithm is proposed.
• We formulate a bound constrained optimization problem by a modified augmented Lagrangian function.
• The proposed algorithm is successfully tested on several benchmark test functions and four engineering design problems.
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a b s t r a c t

We present a new hybrid method for solving constrained numerical and engineering optimization prob-
lems in this paper. The proposed hybrid method takes advantage of the differential evolution (DE) ability
to find global optimum in problems with complex design spaces while directly enforcing feasibility of
constraints using a modified augmented Lagrangian multiplier method. The basic steps of the proposed
method are comprised of an outer iteration, in which the Lagrangian multipliers and various penalty pa-
rameters are updated using a first-order update scheme, and an inner iteration, in which a nonlinear opti-
mization of the modified augmented Lagrangian function with simple bound constraints is implemented
by a modified differential evolution algorithm. Experimental results based on several well-known con-
strainednumerical and engineering optimization problemsdemonstrate that the proposedmethod shows
better performance in comparison to the state-of-the-art algorithms.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In real-world applications, most optimization problems are
subject to different types of constraints. These problems are known
as constrained optimization problems. In the minimization sense,
general constrained optimization problems can be formulated as
follows:

min f (x⃗) (a)
s.t. gj(x⃗) = 0, j = 1, 2, . . . , p (b)

gj(x⃗) ≤ 0, j = p + 1, . . . ,m (c)
li ≤ xi ≤ ui, i = 1, 2, . . . , n (d)

(1)

where x⃗ = (x1, x2, . . . , xn) is a dimensional vector of n decision
variables, f (x⃗) is an objective function, gj(x⃗) = 0 and gj(x⃗) ≤ 0
are known as equality and inequality constraints, respectively. p
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is the number of equality constraints and m − p is the number of
inequality constraints, li and ui are the lower bound and the upper
bound of xi, respectively.

Evolutionary algorithms (EAs) havemany advantages over con-
ventional nonlinear programming techniques: the gradients of the
cost function and constraint functions are not required, easy imple-
mentation, and the chance of being trapped by a local minimum is
lower. Due to these advantages, evolutionary algorithms have been
successfully and broadly applied to solve constrained optimization
problems [1–10] recently. It is necessary to note that evolution-
ary algorithms are unconstrained optimization methods that need
additional mechanism to deal with constraints when solving con-
strained optimization problems. As a result, a variety of EA-based
constraint-handling techniques have been developed [11,12].

Penalty function methods are the most common constraint-
handling technique. They use the amount of constraint violation to
punish an infeasible solution so that it is less likely to survive into
the next generation than a feasible solution [13]. The augmented
Lagrangian is an interesting penalty function that avoids the side-
effects associated with ill-conditioning of simpler penalty and
barrier functions. Recent studies have used different augmented
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Lagrangian multiplier methods with an evolutionary algorithm.
Kim and Myung [14] proposed a two-phase evolutionary pro-
gramming using the augmented Lagrangian function in the sec-
ond phase. In this method, the Lagrangian multiplier is updated
using the first-order update scheme applied frequently in the de-
terministic augmented Lagrangianmethods. Although thismethod
exhibits good convergence characteristics, it has been tested only
for small-scale problems. Lewis and Torczon [15] proposed an aug-
mented Lagrangian technique, where a pattern search algorithm
is used to solve the unconstrained problem, based on the aug-
mented Lagrangian functionpresentedbyConnet al. [16]. Tahk and
Sun [17] used a co-evolutionary augmented Lagrangian method to
solve min–max problems by means of two populations of evolu-
tion strategies with annealing scheme. Krohling and Coelho [18]
also formulated constrained optimization problems as min–max
problems and proposed the co-evolutionary particle swarm op-
timization using Gaussian distribution. Rocha et al. [19] used an
augmented Lagrangian function method along with a fish swarm
based optimization approach for solving numerical test problems.
Jansen and Perez [20] implemented a serial augmented Lagrangian
method in which a particle swarm optimization algorithm is used
to solve the augmented function for fixed multiplier values.

In the above approaches, the augmented Lagrangian functions
were used to deal with the constraints in constrained optimiza-
tion problems. However, penalty vectors were only considered as
fixed vectors of parameter. Theywere given at the beginning of the
algorithms and kept unchanged during the whole process of solu-
tion. It is difficult and very important to choose some good penalty
vectors. In addition, Mezura-Montes and Cecilia [21] established a
performance comparison of four bio-inspired algorithms with the
same constraint-handling technique (i.e., Deb’s feasibility-based
rule) to solve 24 benchmark test functions. These four bio-inspired
algorithms are differential evolution, genetic algorithm, evolution
strategy, and particle swarm optimization. The overall results indi-
cate that differential evolution is the most competitive among all
of the compared algorithms for this set of test functions.

In this paper, we presented a modified augmented Lagrangian
technique, where a differential evolution algorithm is used to solve
the unconstrained problem, based on the augmented Lagrangian
function proposed by Liang [22]. The basic steps of the proposed
method comprise an outer iteration, in which the Lagrange mul-
tipliers and various penalty parameters are updated using a first-
order update scheme, and an inner iteration, in which a nonlinear
optimization of the modified augmented Lagrangian function with
bound constraints is solved by a differential evolution algorithm.

The rest of this paper is organized as follows. In Section 2, the
modified augmented Lagrangian formulation method is described.
In Section 3, the proposed hybrid method is discussed in sufficient
detail. Simulation results based on constrained numerical opti-
mization and engineering design problems and comparisons with
previously reported results are presented in Section 4. Finally, the
conclusions are given in Section 5.

2. Modified augmented Lagrangian formulation

In nonlinear constrained engineering optimization, the prob-
lem size ranges from a few hundred to several thousands of
variables and constraints. Currently, the most frequently used
solution methods are the generalized reduced gradient methods,
successive quadratic programmingmethods, and themodified bar-
rier function methods. These approaches are based on the lin-
earization techniques and can be applied to problems with either
a few variables, when used in full space, or a few degrees of free-
dom, when used in reduced space. Also, the presence of many in-
equality constraints (and bounds) maymake their active-set based
strategies quite inefficient. The modified barrier function method,

which transforms the originally constrained problem to a series of
unconstrained ones, has finite convergence as opposed to asymp-
totic convergence for the classical barrier function methods and
their barrier parameters need not be driven to zero to obtain the
solution. But the case of equality constraints poses a serious diffi-
culty on the method. All these methods start from an initial point
and iteratively produce a sequence to approach some local solu-
tion to the studied problem. The purpose of this work is to utilize
the modified augmented Lagrangian multiplier method for con-
strained problems (1).

In formula (1), if the simple bound (1)(d) is not present, then
one can use the modified augmented Lagrange multiplier method
to solve (1)(a)–(c). For the given Lagrange multiplier vector λk

and penalty parameter vector σ k, the unconstrained penalty sub-
problem at the kth step of this method is

Minimize P(x, λk, σ k) (2)

where P(x, λ, σ ) is the following modified augmented Lagrangian
function:

P(x, λ, σ ) = f (x) −

p
j=1


λjgj(x) −

1
2
σj(gj(x))2



−

m
j=p+1

P̃j(x, λ, σ ) (3)

and P̃j(x, λ, σ ) is defined as follows:

P̃j(x, λ, σ ) =


λjgj(x) −

1
2
σj(gj(x))2, if λj − σjgj(x) > 0

1
2
λ2
j /σj, otherwise.

(4)

It can be easily shown that the Kuhn–Tucker solution (x∗, λ∗) of
the primal problem (1)(a)–(c) is identical to that of the augmented
problem (2). It is alsowell known that, if the Kuhn–Tucker solution
is a strong local minimum, then there exists a constant σ̄ such that
x∗ is a strong local minimum of P(x, λ∗, σ ) for all penalty vector σ

which component not less than σ̄ ; the Hessian of P(x, λ, σ ) with
respect to x near (x∗, λ∗) can be made positive definite. Therefore,
x∗ can be obtained by an unconstrained search from a point close
to x∗ if λ∗ is known and σ is large enough.

If the simple bound (1)(d) is present, the above modified aug-
mented Lagrangemultipliermethod needs to bemodified. Inmod-
ified barrier function methods, the simple bound constraints are
treated as the general inequality constraints xi−li ≥ 0 and ui−xi ≥

0, which enlarges greatly the number of Lagrange multipliers and
penalty parameters. So,wemake anothermodification to dealwith
the bound constraints. At the kth step, assume that the Lagrange
multiplier vector λk and penalty parameter vector σ k are given;we
solve the following bound constrained sub-problem instead of (2):
min P(x, λk, σ k)

s.t. li ≤ xi ≤ ui
(5)

where P(x, λ, σ) is the samemodified augmented Lagrangian func-
tion as in (3). Let S ⊆ Rn designate the search space, which is de-
fined by the lower and upper bounds of the variables (1)(d). The
solution x∗ to sub-problem (5) can be obtained by searching the
search space if λ∗ is known and σ is large enough. We will choose
the differential evolution algorithm for the global search in (5). The
details are discussed below.
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