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Abstract

This paper presents a robust and efficient surface flattening approach based on fitting a woven-like mesh model on a 3D freeform surface.

The fitting algorithm is based on tendon node mapping (TNM) and diagonal node mapping (DNM), where TNM determines the position of a

new node on the surface along the warp or weft direction and DNM locates a node along the diagonal direction. During the 3D fitting process,

strain energy of the woven model is released by a diffusion process that minimizes the deformation between the resultant 2D pattern and the

given surface. Nodes mapping and movement in the proposed approach are based on the discrete geodesic curve generation algorithm, so no

parametric surface or pre-parameterization is required. After fitting the woven model onto the given surface, a continuous planar coordinate

mapping is established between the 3D surface and its counterpart in the plane, based on the idea of geodesic interpolation of the mappings of

the nodes in the woven model. The proposed approach accommodates surfaces with darts, which are commonly utilized in clothing industry

to reduce the stretch of surface forming and flattening. Both isotropic and anisotropic materials are supported.
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1. Introduction

Surface flattening is an important process in many

applications (e.g. aircraft industry, ship industry, shoe

industry, apparel industry, etc.). In the traditional process

of footwear industry, the profile of the shoe upper layer is first

estimated and then cut out; after sewing together the pieces of

the layer, a foot shape mould is inserted to deform the leather

to a desired shape [1]. In the aircraft industry, structures

reinforced by woven fabrics are commonly used [2]. Similar

to the footwear case, profiles of the woven fabrics are

estimated and cut out, and then they are laid onto a certain 3D

shape. In both cases, the profile of the material is still

conjectured in practice by human based on trial-and-error

and this estimation is quite time consuming and inaccurate.

In the Computer-Aided Design (CAD) of products, people

expect to obtain an accurate profile. Actually, they want to

obtain the profile in a reverse way: first designing the 3D

surface of the product on a CAD system, and then determine

the corresponding 2D profile of the surface. This is exactly

the following surface flattening problem:

Problem Definition Given a 3D freeform surface and the

material properties, find its counterpart pattern in the plane

and a mapping relationship between the two so that, when

the 2D pattern is folded into the 3D surface, the amount of

distortion—wrinkles and stretches—is minimized.

In this paper, we present a surface flattening technique

based on fitting a woven-like mesh (woven mesh) model

onto a 3D surface M. Two mapping methods: tendon node

mapping (TNM) and diagonal node mapping (DNM) are

proposed to initially locate the nodes of a woven mesh on

the given surface. In the tendon node mapping, two

mutually perpendicular geodesic curves are generated on

M which are called tendons since they will not be moved in

the ensuing energy releasing process and they are mapped

into two perpendicular straight lines on the planar woven

before the fitting. The tendon nodes are located on the

tendon curves with equal distance. The diagonal node

mapping method is then incorporated to position new nodes

based on the other three located nodes belonging to the same
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quad in the woven mesh. Thus, by a propagation procedure,

the nodes can be fitted on M one by one. During the fitting of

nodes, strain energies at the fitted nodes are released by a

diffusion process. The strain energy is defined based on the

geodesic distance of adjacent nodes and their Euclidean

distance on the surface. The difference between the original

2D woven mesh and the given surface is minimized, so the

deformation between the 2D profile and the 3D freeform

surface is minimized. Both the node mapping and move-

ment in our approach are based on the discrete geodesic

curve generation algorithm [4]; therefore, different from

other existing methods [5–9], no parametric surface or pre-

parameterization is required by us. After fitting a woven

mesh model, a planar coordinate mapping is developed to

compute the 2D coordinate of every point on M. The

proposed fitting technique accommodates surfaces with

darts which are commonly adopted in practice to reduce the

distortion of surface forming and flattening. Also, for the

strain energy minimization, not only isotropic but also

anisotropic materials can be simulated.

The freeform 3D surface considered in this paper is

represented as a two-manifold polygonal mesh with a

boundary, which is topologically equivalent to a disk. The

mesh is a complex of vertices and the connectivity between

the vertices—here we adopt the data structure in [3] to store

the mesh. Using this data structure, we can easily obtain the

adjacent relationship of vertex–vertex, vertex–edge, vertex–

face, and edge–face.

The paper is organized as follows. We will first review

some related work in surface flattening. The woven mesh

model is then introduced. The detail fitting methodology is

presented in Section 4, in the sequence of tendon node

mapping, diagonal node mapping, boundary propagation,

and strain energy minimization. Section 5 describes the

planar coordinate mapping scheme which establishes the

continuous mapping relationship between every point on a

given surface and its flattened 2D counterpart. A number of

experimental examples are then presented to illustrate the

proposed flattening algorithm, and comparisons are made

with two other known surface flattening algorithms (one is

pure geometry-oriented and another is energy-based).

Finally in Section 7 we summarize the paper.

2. Related work

Due to its importance, in both theory and practice,

research in surface flattening has been active for a number

of years, and not limited to only design and manufacturing.

In the following we give a short summary on the various

related developments over the past few decades.

2.1. Parameterization

The flattening of a triangular 3D mesh, which provides a

bijective mapping between the mesh and a triangulation of

a planar polygon, plays an important role in parameteriza-

tion and texture mapping. An excellent survey of recent

advances in mesh parameterization is given in [10], see also

the references therein. Floater [11] investigated a graph-

theory based parameterization for tessellated surfaces for

the purpose of smooth surface fitting; his parameterization

(actually a planar triangulation) is the solution of linear

systems based on convex combination. In [12], Hormann

and Greiner used Floater’s algorithm as a starting point for a

highly non-linear local optimization algorithm which

computes the positions for both interior and boundary

nodes based on local shape preservation criteria. The

method is promising, but it is not clear if the procedure is

guaranteed to converge to a valid solution. A quasi-

conformal parameterization method based on a least-

squares approximation of the Cauchy–Riemann equations

is introduced in [13], where the defined objective function

minimizes angle deformation. Desbrun et al. [14] developed

an efficient parameterization algorithm minimizing the

distortion of different intrinsic measures of the original

mesh. However, in both [13] and [14], the linear stretch is

not considered. Sheffer and de Sturler [15,16] presented a

texture mapping algorithm that causes small mapping

distortion. Their algorithm consists of two steps: (1) using

the Angle Based Flattening (ABF) parameterization method

to provide a continuous (no foldovers) mapping, which

concentrates on minimizing the angular distortion of the

mapping and hence unavoidably often leads to relatively

large linear distortion; (2) to reduce the linear distortion, an

inverse mapping from the plane to the result of ABF is

computed to improve the parameterization—the improved

result has low length distortion. In [17], a texture stretch

metric is introduced to minimize the linear distortion via

non-linear optimization. Since non-linear numerical optim-

ization is conducted in [15–17], these approaches are time

consuming. Most recently, in [18], a fast and simple method

for generating a low-stretch mesh parameterization is

developed. It starts from any other parameterization (e.g.

the Floater shape preserving parameterization [11], or the

intrinsic parameterization [14]) and then improves the

parameterization gradually by a diffusion process using

the stretch metric of [17]. It can significantly improve the

stretch in a mesh parameterization. However, since the

boundary vertices are not moved, the 2D boundary profile

depends on the initial parameterization. When the natural

boundaries are required (as mentioned earlier in our

problem definition), they use the intrinsic parameterization

[14]. Since in [14] the stretch is not minimized, the resultant

2D profiles are seldom satisfied in either its length or the

enclosed area.

2.2. Strain-energy minimization

McCartney et al. [19] flatten a triangulated surface by

minimizing the strain energy in the 2D pattern. The 3D

surface is first triangulated using Delaunay triangulation.
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