Computers & Graphics 34 (2010) 304-311

Contents lists available at ScienceDirect

Computers & Graphics

ul K
&GRAPHICS

journal homepage: www.elsevier.com/locate/cag

Technical Section
Example-based curve synthesis

Paul Merrell *, Dinesh Manocha

University of North Carolina at Chapel Hill, USA

ARTICLE INFO ABSTRACT

We present a novel synthesis algorithm for procedurally generating complex curves. Our approach

Keywords:
Procedural modeling
Model synthesis
Curve synthesis

takes a simple example input curve specified by a user and automatically generates complex sets of
curves that resemble the input. The algorithm preserves many of the local shape features of the input
curves such as tangent directions, curvature, branch nodes, and closed loops. The overall approach is
simple and can be used to generate varied curved 3D models in a few minutes. We demonstrate its

application by generating complex, curved models of man-made objects including furniture pieces,
chandeliers, glasses, and natural patterns such as river networks and lightning bolts.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

One of the key problems in computer graphics is to generate
geometric models of complex shapes and structures. The main
goal is to generate 3D geometric content for many domains such
as computer games, movies, architectural models, urban planning
and virtual reality. In this paper, we address the problem of
automatically or semi-automatically generating complex shapes
with curved boundaries. Curved artistic decorations with re-
peated patterns are an important part of the design of man-made
objects. These include household items such as furniture, glasses,
candlesticks, chandeliers, toys, etc. Curved structures are also
used in buildings and interior design. Moreover, many natural
patterns (e.g. terrain features or river network) and natural
phenomena, such as lighting, also have curved boundaries with
random variation. As a result, we need simple and effective tools
that can assist artists, designers, and modelers in designing
elaborate curved objects and structures.

Most of the prior work in this area has been in procedural
modeling, which generates 3D models with repeated patterns
from a set of rules. These include L-systems, fractals and
generative modeling techniques which can generate high-quality
3D models of plants, architectural models and city scenes.
However, each of these methods is mainly limited to a special
class of models. Instead, our goal is to use example-based
techniques which are more general and can generate complex
models from a simple example shape [1-4]. Some of these model
synthesis methods have been inspired by texture synthesis, but

* Corresponding author.
E-mail address: pmerrell@cs.unc.edu (P. Merrell).
URL: http://gamma.cs.unc.edu/synthesis (P. Merrell).

0097-8493/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cag.2010.05.006

the current methods are limited primarily to complex polyhedral
models with planar boundaries or layouts of city streets.

Main result: In this paper, we present a new method for rapidly
generating many sets of curves based on an example. Our
algorithm accepts a set of 2D curves as an input and rapidly
generates many more complex curves in a similar style. Our
method is primarily designed to capture the local structure of the
example curve based on local shape characteristics such as
tangent and curvature, and not the global structure. As a result,
it is better suited for generating complex curves, which have a
random layout.

Our approach is general and makes no assumptions about the
shape or smoothness of the input curves. We perform local shape
analysis based on tangent vectors and curvature of the input
curve, and generate output curves that tend to preserve these
local features including cusps, branches, and closed loops.
Furthermore, we explicitly check for self-intersections between
the curve segments. We use a graph to maintain the topology
of various curve segments and present automatic methods to
incrementally refine the structure of the graph to generate the
final curves. We also present an intuitive metric to evaluate the
quality of the results. Given a set of generated curves, we perform
an extrusion operation or use the final curves as generators for
surfaces of revolution to generate 3D models of curved objects.

The overall algorithm is relatively simple, efficient and quite
robust in practice. Our system allows users to edit the generated
curves interactively. We use our algorithm to generate complex
3D models of chandeliers, drinking glasses, candlesticks, river
networks, lightning bolts, and cabinet handles with hundreds or
thousands of curve segments or surface patches in a few minutes.

The rest of the paper is organized as follows. In Section 2, we
discuss related work on procedural modeling and curve genera-
tion. In Section 3, we explain our curve generation algorithm. We
show results and analyze our method in Section 4. We compare


www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2010.05.006
mailto:pmerrell@cs.unc.edu
mailto:http://gamma.cs.unc.edu/synthesis.3d
dx.doi.org/10.1016/j.cag.2010.05.006

P. Merrell, D. Manocha / Computers & Graphics 34 (2010) 304-311 305

our approach to other methods in Section 5 and discuss ideas for
future research in Section 6.

2. Related work

A few techniques have been developed to transform curves
sketched in one particular artistic style into a different artistic
style [5,6]. The artistic styles are determined automatically from
the example curves sketched by the user. Similar techniques have
also been applied to meshes to transform the models [7,8] and
also to transform space-time curves for animation [9]. Simhon
and Dudok [10] use a hidden Markov model to add artistic details
to sketches. These techniques rely on the user to specify the large-
scale structure of the curve or shape to be generated, but do not
address the problem of generating many curves of a particular
style with a varied large-scale structure.

Layouts of city streets have been created using an interactive
tool which uses tensor fields [11]. Kalnins et al. [12] use a non-
photorealistic rendering technique to draws 3D models in
different artistic styles. It generates curves representing the
strokes an artist might draw or paint in a particular style.

Example-based techniques are widely used to synthesize
texture [13,14]. Similar techniques have been applied to vector
data to generate strokes in a particular style [15,16]. Two-
dimensional arrangements of elements can be created from an
example [17]. Three-dimensional closed polyhedral models can
also be synthesized from example models [2-4]. However,
example-based techniques have only been applied to curved
models in specific cases such as the layout of city streets [1].

Procedural modeling techniques are widely used to generate
different types of objects including urban environments [18,19]
and plants using L-systems [20-22]. Pottmann et al. [23] have
presented elegant algorithms to generate freeform shapes for
architectural models. Wong et al. [24] have developed a
procedural technique for designing floral ornamentation. These
techniques produce compelling models, but requires significant
effort from the user to control and cannot be modified
interactively.

Sketch-based interfaces have been developed as an intuitive
way to model and deform meshes [25,26]. These methods
complement our approach and can be used to transform 2D
curves into full 3D models.

3. Curve generation

In this section, we present our curve synthesis algorithm. We
first give an overview of our method, then we describe each stage
of the algorithm in more detail. We describe how to decompose
the input into a set of small segments which are connected and
stretched into larger curves. These curves are modified stochas-
tically and evaluated based on how closely they resemble the
original curves and if they avoid self-intersections.

3.1. Overview

The user inputs an example curve as a set of parametric curves.
The curves may or may not contain closed loops, branches, and
cusps. Our algorithm generates a set of output curves that
resemble the input curves.

We first subdivide the input curve into smaller parts called
curve segments as described in Section 3.2. The output curves are
formed as an ordered sequence of segments. Two curve segments
can connect together if their tangents and curvatures are close to
each other. We allow the user to control the shape of the curves

interactively by selecting points on the curves and repositioning
them. In order for those points to reach their specified positions,
the curves are stretched as described in Section 3.3. But the curves
should not be stretched very far, since this causes them to
resemble the original curve less. To prevent the curves from
stretching too far, it is necessary to modify the sequence of
segments. We replace segments in the sequence with new
segments to decrease the amount of stretching.

Minimizing the amount of stretching is one of several goals we
have for the set of curves. It is also important that the curves do
not intersect themselves and do not separate into disjoint parts.
We evaluate the set of curves by determining how far the curves
are stretched and how many branches, self-intersections, and
disjoint parts they contain. The curves are modified stochastically
as described in Section 3.4 and are evaluated as described in
Section 3.5. Each curve modification is only kept if it decreases the
amount of stretching. Changes to the curves can occur rapidly and
they are displayed to the user in real-time as part of our
interactive interface.

Since our goal is to generate sets of curves which may contain
multiple branches and loops, we use a graph data structure to
represent the set of curves (see Section 3.4). The vertices of the
graph are the curves’ endpoints and branching points.

3.2. Creating and connecting segments

This section discusses how we subdivide the input curves into
curve segments and then combine them together. The curve
segments are the basic building blocks of the output curves. The
input is a set of parametric curves {c;(t),cy(t),...}, where each
curve c;(t) starts at t=0 and ends at t=1. We use 2D Bezier curves
in practice, but our algorithm can handle any curve representa-
tion as long as we can subdivide the curves and evaluate bounds
on their tangents and curvatures.

Our method ensures that the new curves resemble the
example curves in a similar way to many texture synthesis
algorithms, which is to force every local neighborhood of the new
curve to resemble a neighborhood of the example curve. A curve’s
local neighborhood is characterized by its tangent angle
0= atan2(y x) and signed curvature k= (xy —yx)/(x*>+y?*)/2.
The tangent angles and curvatures are discretized into uniform
bins 0 = 10/0,] and k= Lk/ky,] where 0, and kj, are the size of the
bins. In our algorithm, two curve segments can be connected if
they have tangent angles and curvatures inside the same bin.

Each segment s; has a starting and ending tangent angle, 9,59,6

and a starting and ending curvature k,sk,e Smooth segments are
subdivided until they start and end only one bin apart. The
tangents and curvature are not defined at cusps. All this means is
that we never divide the curve at a cusp. The cusp is always
contained inside one of the segments. It is always combined with
the part of the curve immediately before and the part immedi-
ately after it into a single segment. The cusp is integrated into a
segment s; with well-defined beginning and ending tangents

efef Algorithm 1 gives a pseudo-code description of how the
curves are subdivided.

Algorithm 1. Method for subdividing a piecewise smooth curve
into segments.

subdividePiecewise({c;(t),cx(t),...,c,(t)})
c is a piecewise smooth curve composed of the curves
cq(t),ca(t),...which may intersect at cusps.

1: fori = 1tondo

2: subdivide(c;,0,1)

3: end for



Download English Version:

hitps://daneshyari.com/en/article/10335937

Download Persian Version:

https://daneshyari.com/article/10335937

Daneshyari.com


https://daneshyari.com/en/article/10335937
https://daneshyari.com/article/10335937
https://daneshyari.com

