
Technical Section

Triangulation of CAD data for visualization using a compact array-based
triangle data structure

Sang Wook Yang, Young Choi �

Department of Mechanical Engineering, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul, Republic of Korea

a r t i c l e i n f o

Article history:

Received 21 May 2009

Received in revised form

22 January 2010

Accepted 11 February 2010

Keywords:

Mobile device

Triangulation

Visualization

Mobile 3-D

Indexed triangles

a b s t r a c t

We present a triangulation method for visualization of computer-aided design (CAD) model data. The

proposed method has been enhanced from a previously devised sequential triangulation method that

used indexed array triangle representation. The improvement is achieved by an enhancement of the

searching algorithm for array-based data structure.

The proposed triangulation is a sequential triangulation method with an optimized kd-tree in

permutation vector form to accelerate the insertion of surface points. The permutation vector is formed

by rearranging the sequence of vertex array elements comprising indexed triangle data, and the space

partition information of the kd-tree is represented as a vertex sequence only.

The proposed triangulation method was designed for mobile devices with inadequate memory size

and CPU speed compared to desktop computers. We considered both efficiency and compactness in our

implementation. Topological operators are defined for querying and searching information within

indexed triangle data. Experimental results empirically show that the triangulation method is of O(n)

time complexity, and is bounded by O(n log n) for worst-case data.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous studies of three-dimensional (3-D) visualization for
mobile devices and graphic utilities such as OpenGL|ES and
DirectX Mobile have made it easier to render 3-D models in the
mobile environment. Tessellated 3-D shapes can be rendered
easily on mobile devices using OpenGL|ES and DirectX Mobile;
thus, various graphics applications such as 3-D games have been
developed with mobile graphic engines. However, since triangu-
lation is comparatively expensive in terms of computation, these
mobile 3-D graphics applications have dealt only with pre-
tessellated geometric data.

Studies of 3-D graphic visualization for mobile devices can be
categorized as remote rendering architecture [1–6], visualization
of tessellated data [7–9], and progressive mesh-based methods
[10–12]. In remote rendering architecture, the rendered images or
video streams are generated by a server and the generated scenes
are transferred to mobile devices. Progressive mesh-based
methods are used to reduce the size of tessellated model data.
Recently, studies have been conducted to accelerate the rendering
performance on mobile devices from both the hardware and
software points of view [13]. Most of the previous studies of 3-D
visualization on mobile devices utilize pre-tessellated models.

Complex 3-D models such as 3-D CAD data are converted to
approximated mesh models or images on the server side, and are
transferred to the mobile devices. Then, the transferred data are
simply rendered in the mobile devices. This is why previous
studies focused on mobile 3-D concentrated on data conversion,
transfer, and rendering efficiency.

Since the visualization of parametric surfaces with a boundary
is much more complicated than the rendering of a pre-tessellated
model, it is difficult to visualize 3-D CAD models directly
on mobile devices. If a triangulation process that is efficient
in memory usage and calculation time is used, the 3-D CAD
model can be directly handled in a mobile device without
preprocessing.

A 3-D model created using a solid modeler or graphic
authoring software is generally represented by parametric
surfaces with boundaries. Tessellation of parametric surfaces is
inevitable in rendering and numerical analysis of a 3-D model;
thus, it has been widely studied and applied to various fields
including computer graphics, CAD/CAM, and computational
analysis. From the point of view of computer graphics and CAE,
approximately regular polygons are required to achieve precise
analysis results and high quality rendering results. Many studies
on the generation of regular meshes have been reported [14], as
well as mesh refinement algorithms that calculate fine meshes
from coarse meshes with respect to angles and aspect ratios of
triangles [15]. However, fewer triangles are required for visuali-
zation of CAD data than for well-shaped triangulation, since the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2010.02.001

� Corresponding author. Tel.: +82 2 820 5312; fax: +82 2 817 5101.

E-mail address: yychoi@cau.ac.kr (Y. Choi).

Computers & Graphics 34 (2010) 424–429

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2010.02.001
mailto:yychoi@cau.ac.kr
dx.doi.org/10.1016/j.cag.2010.02.001


performance of application programs and network transfer are
considered in practical use. Thus, keeping a small number of
triangles while guaranteeing reasonable accuracy of the approx-
imation is important in the visualization of a parametric surface
model. Sadoyan et al. [16] proposed a uniform triangulation
algorithm focused on the CAD/CAM domain by combining lattice-
based triangulation [17] and Delaunay triangulation. The algo-
rithm divides the parametric domain into rectangular cells so that
the bounds of each cell form a simple polygon that triangulates
each cell. The accuracy of the triangulated mesh can be adjusted
with the density of the lattice.

Yang et al. [18] showed that the entire visualization process,
including the triangulation of B-rep CAD data, can be executed on
mobile devices with reasonable computational efficiency with the
support of a new compact data structure. For efficient visualiza-
tion of CAD data on mobile devices, the properties of 3-D CAD
data were used as the input for the triangulation scheme. In
a CAD model, a surface generally consists of a surface geometry
and boundary edges. Since the boundary edges are ordered with
their directions in a loop, they are sequentially traversed for
computation. To reflect the curvatures of free-form surfaces such
as NURBS or Bezier surfaces, it is necessary to insert points on the
boundary loops and on the surfaces during the triangulation
process.

We present a triangulation method, which is an improved
version of our previous work [18]. The improvement is based on
separation of the construction of the space search tree from the
sequential triangulation process. Additionally, we defined opera-
tions to manipulate a simple indexed triangular data structure
and to formulate our improved triangulation method. Section 2
describes the operations for searching adjacency information and
modifying topologies with a simple data structure called
constraints embedded triangles (CETs). Section 3 contains our
proposal for a sequential triangulation process based on a
permutation vector for a space searching tree. Section 4 presents
the results of an experiment using the proposed triangulation
process. Section 5 gives our conclusions.

2. Array-based data structure for triangulation

CET is a simple modification of the interworld data structure
that describes Voronoi diagrams of balls in 3-D space [19]. The
CET data structure represents both triangle adjacency and
constraint information that describes a surface boundary, and
was proposed as an efficient description of constrained triangula-
tion in a two-dimensional (2-D) parametric domain. CET consists
of two arrays: a vertex array and an indexed triangle array. The
CET data structure is briefly described in Section 2.1. In addition,
the operations for the retrieval, traversal, and modification of
entities are briefly explained, and these will be used in the
discussion of our algorithm.

2.1. CET data structure

A triangulation in 2-D space can be represented with an array of
n vertices V={v0, v1,y, vn�1} and an array of m triangles T={t0,
t1,y, tm�1}. We can also represent a constrained triangulation
with these two arrays by denoting a triangle in T as t=(M0, M1, M2,
N0, N1, N2, f0, f1, f2) where Mi represents an array index of a vertex in
V, Ni represents an array index of a triangle in T, and fi describes the
constraint flag of the edge between t and the triangle referenced by
Ni. The vertices referenced by M0, M1, and M2 occur in counter-
clockwise order. The triangle referenced by Ni is a neighbor to
triangle t, and is not connected to the vertex referenced by Mi. If a
vertex is represented as v=(p, L) where p represents the
coordinates of the vertex and L is an array index of a triangle
connected to v, we can traverse the triangle adjacency from a
vertex. The traversal operations are described in Section 2.2.
The flag value fi is an enumeration of {0, 1, 2, 3}. The value 0 implies
that the edge is not a constraint edge. The value 1 implies that the
indicated edge of t is a constraint edge and that its direction in the
context of the triangle is the same as the direction of the edge in
the context of the boundary loop, as shown in Fig. 1(a). The value 2
implies that the indicated edge of t is a constraint edge and that its
direction in the context of the triangle is opposite to the direction
of the edge in the context of the boundary loop, as shown in
Fig. 1(b). Fig. 1(c) shows that the constraint edge has two
directions; this is represented by a flag value of 3. Since each flag
can be expressed with two bits, only a single byte is needed to
represent the four different flags.

2.2. Operations for CET data

Guibas and Stolfi [20] presented a quad-edge data structure
and introduced a divide-and-conquer algorithm for computing a
Voronoi diagram in terms of primitives for the manipulation. A
description using primitives and operations provides a hierarch-
ical and structured description of algorithms; thus, we also
explain our algorithm in terms of operators related to the data
structure.

The operators described in Table 1 are categorized into two
types. The operators in the ‘Retrieval’ category retrieve topological
information directly from the arrays in the CET data structure, and
the operators in the ‘Modification’ category modify adjacency
information in the array data. Since all of the operators are easily
defined from the relationship between the vertex array and the
triangle array described in Section 2.1, a detailed explanation is
omitted. However, we emphasize the following: there is no
explicit edge data in the CET data structure, but an edge can be
described as a pair consisting of a triangle and an index to the
adjacent triangle that shares the edge. The edge operator retrieves
edge information and the flag operator retrieves edge flag
information that represents a constraint edge direction.

f f

v(M2)v(M2) v(M2)

f1=0 f1=0 f1=0
f0=10 f0=2 f0=3

v(M0) v(M0) v(M0)
v(M1) v(M1) v(M1)

f2=0 f2=0 f2=0

Fig. 1. Examples of constraint edge flag values.

S.W. Yang, Y. Choi / Computers & Graphics 34 (2010) 424–429 425



Download English Version:

https://daneshyari.com/en/article/10335949

Download Persian Version:

https://daneshyari.com/article/10335949

Daneshyari.com

https://daneshyari.com/en/article/10335949
https://daneshyari.com/article/10335949
https://daneshyari.com

