
Technical Section

Real-time path-based surface detail

Carles Bosch �, Gustavo Patow

Grup de Geometria i Gr �afics, Universitat de Girona, E-17071 Girona, Spain

a r t i c l e i n f o

Article history:

Received 4 December 2009

Received in revised form

3 March 2010

Accepted 15 April 2010

Keywords:

Surface detail

Real-time rendering

Vector graphics

a b s t r a c t

We present a GPU algorithm to render path-based 3D surface detail in real-time. Our method models

these features using a vector representation that is efficiently stored in two textures. First texture is

used to specify the position of the features, while the second texture contains their paths, profiles and

material information. A fragment shader is then proposed to evaluate this data on the GPU by

performing an accurate and fast rendering of the details, including visibility computations and

antialiasing. Some of our main contributions include a CSG approach to efficiently deal with

intersections and similar cases, and an efficient antialiasing method for the GPU. This technique allows

application of path-based features such as grooves and similar details just like traditional textures, thus

can be used onto general surfaces.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Up to now, real-time visualization of surface detail has been
limited to the generation and usage of geometry or sampled data
structures as in bump mapping [1], displacement mapping [2], or
relief mapping [3,4], which show aliasing problems for close
views and do not provide a correct solution for filtering in far-
views. On the other hand, vector textures are gaining popularity
[5,6], but are limited to flat 2D representations without encoding
other 3D information besides normal map perturbation techni-
ques [7]. Visibility and occlusion issues in these representations
have never been treated in the context of vector-based repre-
sentations.

This paper presents a feature-based per-pixel displacement
mapping technique. It builds upon previous vector texture
representations and per-pixel displacement mapping techniques,
and makes a step forward to achieve a robust and flexible real-
time vector based displacement mapping algorithm (see Fig. 1).
The presented method is capable to visualize geometry details
like scratches, cracks, grooves and extremely sharp edged features
like bricks or edges on manufactured objects. Also, our method
allows accurate visualization of these path-based features in a
single pass algorithm by performing a single write per pixel.

Approach: Our real-time method computes 3D geometric detail
in texture-space by using a continuous representation that is
stored in two textures, without relying on additional geometry
(albeit with an increase in computational cost). See Fig. 2. We use
techniques derived from the usage of vector textures in the GPU

to store the geometry and properties of the features, and evaluate
them in real-time. The first texture is a grid that specifies the
positions of the features, providing pointers to the second texture
which contains the feature paths, profiles and material
information. A fragment shader at the GPU evaluates this data,
and generates an accurate and fast rendering by using a
constructive solid geometry (CSG) analogy.

Contributions: The new method presented here is the first real-
time approach to present 3D vector-based surface detail other
than flat textures. In particular, it allows accurate visualization of
path-based features, although this could be extended to other
features as well. We also introduce a CSG analogy that is both
flexible and powerful. The visualization is done in a single pass
and by performing only one write per pixel. As a consequence, we
have a low-bandwidth coherent memory access, which is
advantageous for many-core architectures. Also, it has efficient
approximate antialiasing which allows the rendering of the
features from close to distant views. We use two main
approximate filtering techniques, called region-sampling and
supersampling. Both techniques are used in combination to solve
both visibility and shadowing antialiasing issues.

Limitations: Our path-based feature representation shares a
few limitations with other vector-based representations [6]. For
example, it assumes a static layout of features, as a dynamic
situation would require re-encoding features at each time step,
which is very fast but is not capable of real-time results. Also, a
feature segment can be replicated in many texels it overlaps, but
in our experience there is almost no storage overhead. Also, each
texel may have a different number of features, thus requiring
an indirection scheme to avoid data sparseness. Finally, we
require the features and the object surface where they are applied
to have low curvature, in order to obtain correct visibility
computations.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2010.04.001

� Corresponding author. Tel.: +34 972 418832; fax: +34 972 418792.

E-mail addresses: cbosch@ima.udg.edu (C. Bosch), dagush@ima.udg.edu

(G. Patow).

Computers & Graphics 34 (2010) 430–440

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2010.04.001
mailto:cbosch@ima.udg.edu
mailto:dagush@ima.udg.edu
mailto:dagush@ima.udg.edu
dx.doi.org/10.1016/j.cag.2010.04.001


2. Previous work

The method we present in this paper is closely related to
surface detail techniques, real-time vector texture representa-
tions, and scratches and grooves modeling and rendering.

In general, macro-geometric models use general techniques
that allow the simulation of different kinds of surface details, such
as bump mapping [1], displacement mapping [2], relief mapping
[3] or parallax mapping [8,4], among others. For an in-depth
survey on displacement mapping techniques on the GPU, refer to
[9]. These macro-geometry models suffer from resolution pro-
blems and are not able to correctly simulate high frequency or
very close details. Compared to these approaches, the method
presented here addresses these issues in an efficient and natural
way, as can be seen in Fig. 1.

Our method is also related to real-time vector graphics, which
always have had a great appealing because of their seamless
scaling capabilities. In [10], they require a heavy preprocessing
that includes segmenting the contour and embedding each
segment in a triangle. Other schemes present limitations in the
number of primitives allowed for each texel: a few line segments
[11–13], an implicit bilinear curve [14], two quadratic segments
[7], or a fixed number of corner features [5]. Also, Parilov et al. [7]
presented a method for rendering normal maps with disconti-
nuities, which was restricted to path patterns with no ‘‘T’’
junctions, no occlusion computations and with a unique profile
for all features. All these methods share a drawback of limiting the
number of allowed primitives, which is bad for areas which
require high detail. One solution would be to use a finer lattice,
but this would greatly increase storage needs. We use a variable-
length texel representation that allows for patterns of arbitrary
complexity, having none of the above-mentioned restrictions. Our
approach stores feature paths in a way similar to [5,6], but here it
is used to store a 3D structure, not a 2D one as in the mentioned
methods.

Scratch models simulate small isolated grooves that are visible
but where their geometry is imperceptible. These models
combine a 2D texture with an anisotropic BRDF model. The
texture specifies the position of each scratch, while the BRDF is
used to compute their reflection. Examples are the works by

Merillou et al. [15] and Bosch et al. [16]. Recently, an extension
has been proposed to deal with more general path-based features,
which removes the limitations on the size of the features or their
geometric cases (e.g. intersections) [17]. Our method is based on a
similar idea, but our rendering techniques are GPU-friendly,
which results in real-time frame rates for a similar rendering
quality.

Porumbescu et al. [18] introduced shell maps, which allow to
add arbitrary small-scale surface detail to a triangulated object,
but not at interactive rates. Later, [19] introduced techniques that
allowed the obtention of interactive frame-rates. The technique
presented here is not as general as these, but allows real-time
frame-rates to be obtained.

Naturally, details like grooves can also be included in the
geometry model of the objects. Such approach is usually taken for
interactive sculpting or editing. Clearly, our method avoids the
fine discretization required by those methods by transferring
those evaluations to the pixel shader, and thus lowering
bandwidth needs without performing scattered updates to the
framebuffer, as would happen with geometry-based approaches.

3. Overview

In this work we represent 3D geometric detail with a
continuous representation based on paths and cross-sections in
texture space. This information is stored in two textures: the first
one is a grid overlaid on the surface features, where each cell
provides the positions of the features themselves and references
the second texture. This second texture contains the geometry
and properties of the feature path profiles, and material informa-
tion. As mentioned, the proposed method does not need
additional geometry to represent these surface details.

At runtime, our algorithm performs a search in texture space
for the intersection between the viewing ray (transformed to
tangent coordinates) and the features, sequentially evaluating the
contents of each texel along the projected ray. In order to perform
an accurate and fast rendering of the features, we use a
constructive solid geometry (CSG) analogy to compute the
intersection between each viewing ray and the features in each

Fig. 1. The Knight Champion rendered from different viewpoints and distances using our approach (left images, 59278 fps) and relief mapping (right images, 57281 fps) to

simulate the armor engravings. Observe how our antialiasing strategy correctly reproduces the grooves visibility while relief mapping produces noticeable artifacts (insets).

Fig. 2. The presented method is capable to visualize geometry details like scratches, cracks, grooves and extremely sharp edged features without the amount of geometry

needed to get the details. This clearly shows the advantages of texture-based methods. Left: the full model. Middle: the base geometry. Right: the generated detail.

C. Bosch, G. Patow / Computers & Graphics 34 (2010) 430–440 431



Download English Version:

https://daneshyari.com/en/article/10335950

Download Persian Version:

https://daneshyari.com/article/10335950

Daneshyari.com

https://daneshyari.com/en/article/10335950
https://daneshyari.com/article/10335950
https://daneshyari.com

