
Technical Section

A rapid 3D seed-filling algorithm based on scan slice

Wei-Wei Yu a,n, Fei He b, Ping Xi a

a Department of Aircraft Manufacturing Engineering, School of Mechanical Engineering and Automation, BeiHang University, Beijing 100191, PR China
b Department of Orthopaedic Surgery, 1st Affiliated Hospital of Kunming Medical College, Kunming 650032, PR China

a r t i c l e i n f o

Article history:

Received 2 February 2010

Received in revised form

11 April 2010

Accepted 19 May 2010

Keywords:

Seed-filling

Scan slice

Volume graphics

Computer graphics

a b s t r a c t

In this paper, a novel and rapid 3D seed-filling algorithm is proposed to extract or fill the object-

connected 3D region. An improved 2D seed-filling algorithm, which extracts connected region in slice

quickly and consumes fewer stack operations and less memory compared with the existing algorithms,

is presented. The improved 2D algorithm is enclosed as a basic unit within the framework of the

proposed 3D seed-filling algorithm, in order to reduce the complexity of direction of seeds search, and

accelerate region search on adjacent slices. Finally, a parameter of scan range is defined to leap over

invalid seeds, which reduces time consumption of the proposed algorithm further. In addition,

experimental results demonstrate advantages of this algorithm including eliminating the redundancy of

seeds search, repetition of stack operations and running with high efficiency.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The seed-filling algorithm is one of the traditional and classical
algorithms in computer graphics. Its principle is that an initial
seed is employed to search and then fill the object-connected 2D
pixels or 3D voxels in a region with closed boundary. It can be
used to fill regions with arbitrary shape through 4-connected (2D)
or 6-connected (3D) approach.

The principle of seed-filling algorithm is widely applied in
numerous fields. For example, seed-filling can be utilized to
extract the segmented region of 2D image, obtain the characters
of geometric shapes of image (such as area, circumference and
center of mass), calculate regional counting and fill complicated
binary images [1–4].

In addition, the principle of 3D seed-filling is used in the fields
of volume graphics by many scholars. For example, Levoy [5]uses
seed-filling to replace the bounding boxes to accelerate ray
tracing by leaping over empty space; Oikarinen [6] uses seed-
filling in a view lattice to avoid processing empty space and then
accelerate their volume rendering; and Tsai et al. [7] manipulates
volumetric objects by using 3D seed-filling to replace a memory-
consuming voxel extension.

There are different approaches to implement the principle
of seed-filling in 2D or 3D space. The simplest approach is called
flood-filling algorithm. It implements seed-filling algorithm
through seeds recursion, which searches valid seeds within the
4-connected region. However, in implementation of this algo-
rithm, the connectivity of adjacent seeds is not well utilized. In

addition, each seed is accessed repeatedly, and only one seed can
be popped at each time. These problems lead to large memory and
time consumption during high frequent stack operations (see our
experiments in Section 2). Moreover, when a large area in 3D
space is processed, it may probably lead to the memory resource
exhaustion.

Another approach, which is called the traditional scan line
seed-filling algorithm, can remarkably overcome most of the
above described problems. In implementation of this approach,
more seeds can be pushed or popped along the scan lines at a
certain time, and only the rightmost seeds will be pushed into
stack. The scan line seed-filling algorithm reduces the frequency
of repetitive seeds search, the frequency of stack operations and
the memory consumption. However, the connectivity of adjacent
scan lines is not well utilized to reduce repetitive rollbacks (see
Section 3.1 for the definition).

In addition, although the frequency of repetitive seeds search
is reduced, this problem still largely exists. Therefore, when a
large area is processed, the performance of this algorithm should
be improved to reduce the time consumption.

Actually, only the latter approach is widely employed in 3D
space. Feng and Soon [8] describe a 3D seed-filling algorithm that
extends the traditional scan line seed-filling algorithm from 2D to
3D, by extending the search directions of scan lines from the axes
of –y/+y to the axes of –y/+y/�z/+z. It can be used to extract
or fill the region of interest (ROI) with arbitrary shape. However,
the defects of high frequency of stack operations and repetition of
seeds search still exist (see our experiments in Section 2).

Ren and Liu [9] and Guo and Long [10] introduced the
connectivity of adjacent scan lines into the traditional 2D scan
line seed-filling algorithm, which can remarkably reduce the
repetitive seeds search in 2D space. However, the independency

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2010.05.005

n Corresponding author. Tel.: +86 010 82316747; fax:+ 86 010 82317735.

E-mail addresses: mxsf.yu@gmail.com, mxsf929@yahoo.com.cn (W.-W. Yu).

Computers & Graphics 34 (2010) 449–459

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2010.05.005
mailto:mxsf.yu@gmail.com
mailto:mxsf929@yahoo.com.cn
dx.doi.org/10.1016/j.cag.2010.05.005


of scan line is lost, which means that a certain scan line cannot be
used to access its two neighboring scan lines. Thus it is impossible
to expand their 2D algorithms into the 3D space directly.

Oikarinen [6] proposes a special 2D seed-filling algorithm that
removes the use of stack to solve the above described problems. It
avoids recursions by designating neighboring pixels of the current
one as children and examines them in sequence. Constant and less
memory is consumed in this algorithm. However, it suffers from
the time-consuming demerit, caused by repetitive rollbacks for
filled pixels.

Shyan-Bin and Ming-Dar [11] extend Oikarinen’s 2D seed-
filling into 3D space, and presents an improved scan line seed-
filling algorithm. It uses a 2D pointer array of linked lists to avoid
the redundant seeds search, and classifies the relationship of
neighboring scan ranges into five cases: no overlap, complete
overlap, right partial overlap, left partial overlap and middle
partial overlap. However, the main limitation of this algorithm is
that a large and constant 2D pointer array is required, but the
dimensions of different volume datasets are diverse. The algorithm
will fail if a dimension value of a certain volume dataset is greater
than the constant value of 2D pointer array. Therefore, a huge
value that can exceed the maximum dimension value must be set
for the 2D pointer array. In addition, according to our experiments
(see Section 2), the frequency of stack operations is still very high.

Although the above described scan line seed-filling algorithms
have remarkably reduced the time consumption and the size of
stack, two demerits also exist. First, the operations of seeds stack
and repetitive seeds search are still too frequent. It is because the
filling sequence of adjacent scan lines is not utilized to eliminate
the unnecessary repetitive seeds search. Second, for each scan
line, if it is assumed to be a ‘‘seed’’ in 3D space, the adjacent
scan lines will be accessed by using the recursion within the
4-connected region essentially. Therefore, the process of the seeds
search can be considered as the flood-filling in 3D space that only
one ‘‘seed’’ will be pushed or popped in each time. Thus the time
consumption is still large.

In this paper, the existing scan line seed-filling algorithms are
analyzed and their main defects are pointed out first. Then a new
3D seed-filling algorithm is proposed to search and fill con-
secutive 3D object based on scan slice. The main difference
between the proposed algorithm and the existing ones is that the
process of seeds search is based on slice in the proposed
algorithm, which means that the process of seeds search is
executed slice by slice to eliminate the above described defects of
the existing algorithms.

2. Performance of the existing algorithms

To intuitively analyze and describe the performance and
problems of existing algorithms, a region of interest (ROI) is

extracted from a brain volume dataset (512�512�30) to test the
performance of the existing algorithms. The hardware environ-
ment for this implementation is: Genuine Intel (R) CPU-1.66 GHz
(2 CPUs), 2046 MB RAM, NVIDIA Quadro NVS-256 MB. The
software environment is Visual C++6.0. The following experiments
(see Sections 4 and 5) are executed in the same environment.
Fig. 1 shows the extraction process of the ROI. Fig. 1(a) and (b)
shows the reconstructed models of the original dataset and ROI by
using marching cubes (MC) method, respectively.

The original dataset contains 7,864,320 (512�512�30)
voxels, while the dataset of ROI only contains 72,072 voxels
and constitutes 0.92% of the original one. The performance of
algorithm is evaluated from the following aspects: the number of
extracted voxels (marked with Voxels); the frequency of stack
operation (marked with Frequency) including push and pop; the
maximum depth of stack (marked with Depth) and the time
consumption (marked with Time). Table 1 lists the performance
data of three existing 3D seed-filling algorithms during the
implementation of the ROI.

The first algorithm is seed flood-filling algorithm, which does
not use scan lines but the simplest approach of searching seeds by
recursion in 3D space. The second one is Feng’s algorithm [5],
while the third one is Jou’s algorithm [6], both of which search
seeds by scan lines in 3D space.

According to Table 1, the flood-filling algorithm consumes
11.94 min for the extraction of this small region, which is
obviously not feasible for 3D space. The second and the third
algorithms reduce Frequency, Depth and Time remarkably.
Although Jou’s algorithm is improved based on Feng’s, the
performance data of both are similar, which means the improve-
ment is not as effective as expected. In addition, Frequency and
Depth are still high, and the memory resource and time
consumption will linearly increase with the increase in size of
extracted ROI (see our experiments in Section 5). The reason is
that during the implementations of the above mentioned scan
line seed-filling algorithms, the scan line can be essentially
assumed as a ‘‘seed point’’ in 3D space. Thus the seeds search is
executed by recursion as well as the flood-filling algorithm.

Fig. 2 illustrates two modes of seeds search for the existing 3D
seed-filling algorithms. The black and hatched blocks represent
filled and unfilled seeds, respectively. Fig. 2(a) is the model of

Fig. 1. The process of extracting the region of interest.

Table 1
The performance of existing algorithms.

Voxels Frequency Depth Time

Flood-filling 72,000 72,000 16,929 11.94 min

Feng’s 72,072 12,642 1251 0.142 s

Jou’s 72,072 12,564 1730 0.141 s

W.-W. Yu et al. / Computers & Graphics 34 (2010) 449–459450



Download English Version:

https://daneshyari.com/en/article/10335952

Download Persian Version:

https://daneshyari.com/article/10335952

Daneshyari.com

https://daneshyari.com/en/article/10335952
https://daneshyari.com/article/10335952
https://daneshyari.com

