Computers & Graphics 35 (2011) 148-159

Contents lists available at ScienceDirect M

&GRAPHICS

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Extended papers from NPAR 2010

Vector graphics depicting marbling flow

Ryoichi Ando **, Reiji Tsuruno®

2 Graduate School of Design, Kyushu University, 4-9-1, Shiobaru, Minamiku, Fukuokashi 815-8540, Japan
b Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minamiku, Fukuokashi 815-8540, Japan

ARTICLE INFO

Article history:

Received 29 August 2010

Received in revised form

31 October 2010

Accepted 5 November 2010
Available online 23 November 2010

Keywords:
Marbling
Surface flow
Front tracking

ABSTRACT

We present an efficient framework for generating marbled textures that can be exported into a vector
graphics format based on an explicit surface tracking method. The proposed method enables artists to
create complex and realistic marbling textures that can be used for design purposes. Our algorithm is
unique in that the marbling paint on the surface of water is represented as an enclosed contour and is
advected by fluid flow to deform the marbling silhouette. In contrast to previous methods, in which the
shape is tracked with a concentration density field in Eulerian grids, our approach facilitates greater
complexity that is free from grid resolution and per-pixel computation while retaining real-time
performance. To forestall the propagation of large vertices, we adaptively resample the contours,
exploiting the curvature and the turbulence of the fluid as criteria. At the convection phase, we parallelly
advect contour particles on a Graphics Processing Unit (GPU) in addition to applying volume corrections.
Finally, we quickly remove extremely thin lines in shapes to remove dozens of vertices. We performed our
method with an interactive prototype to demonstrate the robustness of the proposed method in several

scenarios.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Marbling is a traditional technique that is used for decorating
papers with paints floating on a liquid. Marbled patterns are
created by dropping paints onto the surface of water and stirring
the surface with brushes. The colors are then transferred to a sheet
of paper by laying the paper on the surface of the water. Today, due
to its ease of use and the vivid and unique patterns it produces, the
marbling designs are printed worldwide onto various media, such
as booklets and tissue boxes [18,13].

One of the most challenging aspects of simulating marbling is to
retain the clarity on the surfaces between the different paints and
the liquid to depict the features of flow streams precisely. Such clear
surfaces are maintained with ox gall and water in real marbling.
Several researchers have attempted to simulate this marbling
effect with grid-based advection schemes. However, the Eulerian
approach comes with built-in “numerical diffusion,” which is
notorious for blurring clear outlines. A higher-order accurate
advection scheme can be used to prevent the dissipation, but it is
computationally expensive and suffers from instabilities known as
Gibb’s oscillations. Among the computer graphics community, a
great variety of fluid phenomena, such as smokes and liquids, have

* Corresponding author.
E-mail addresses: and@verygood.aid.design.kyushu-u.ac.jp (R. Ando),
tsuruno@design.kyushu-u.ac.jp (R. Tsuruno).

0097-8493/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cag.2010.11.002

been explored [4]. However, these techniques are not directly
applicable to marbling flow because they are carefully engineered
to focus on producing specific types of visual properties.

Our method is related to an explicit surface tracking method,
also known as front tracking, which is a technique for tracking
propagating interfaces. Front tracking works with Lagrangian
surface particles connected to triangles or piecewise linear curves,
and it utilizes the underlying motion to capture deforming surfaces.
Front tracking often outperforms other Lagrangian methods
because the particles are placed only on the surface rather than
filling the volume. However, the algorithm tends to be complicated
because surfaces can be tangled.

In the proposed method, we track the deformation of the
marbling shape with explicit surface particles based on the
principle that the contour of the paint region rarely collides by
advection due to the divergence free property of free surface fluid
flow, as shown by Ando and Tsuruno [3]. Note that the ignorance of
topology is only true for free surface flow in continuum level. In
contrast to liquid animation, where the liquid domain merges or
splits vividly over time, the liquid domain of free surface flow is
usually fixed. This strategy makes the algorithm simpler and
intuitive because the topological changes can basically be ignored.
However, if no topological changes are taken into account, the
number of vertices grows limitlessly as the contour stretches,
which significantly slows the simulation. To permit the simulation
of proportionately larger surfaces, we run a fundamental algorithm
on the GPU in a parallel manner, and we resample the contour

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2010.11.002
mailto:and@verygood.aid.design.kyushu-u.ac.jp
mailto:tsuruno@design.kyushu-u.ac.jp
dx.doi.org/10.1016/j.cag.2010.11.002

R. Ando, R. Tsuruno / Computers & Graphics 35 (2011) 148-159 149

W7 Y
E N
/ L % \
Z T N

Fig. 1. Marbleized candy clip: This candy was deformed interactively using our
marbling simulator, and it can be described in terms of vector graphics.

adaptively, watching for the local vorticity and curvature of the
surfaces to approximate the shape with fewer vertices without
losing much visual detail. Even though the contour is essentially
collision free, because the surface is discretized over space and
time, collisions can be produced due to numerical error. We found
that this error does not produce significant visual artifacts, but as an
option we also remove thin line regions that are almost invisible to
remove a large number of vertices and collisions. Consequently,
our algorithm runs reasonably fast in terms of shape complexity
(Fig. 1). Our marbling simulation runs on an underlying velocity
field of fluid, which is generated in real-time in response to the
user’s interactions. The characteristics of marbling deformation are
controlled by the behavior of the velocity field. However, because
the resolution of fluid flow is rather coarse, the tracker produces
slight volume loss at each time step, which accumulates over time.
To maintain concentration constant volume of the fluid, we slightly
move surfaces in normal directions to effectively correct the error.

1.1. Simulation overview

For each time step, our marbling simulator takes the following
five steps in order.

1. Convection: We start the simulation by generating the under-
lying fluid velocity with a uniform grid and semi-Lagrangian

method. We advect the contour points explicitly by fetching
velocities from 16 grid points using cubic spline interpolation
with the fourth-order Runge-Kutta method. We also subdivide
the stretched contour by rewinding time to find a more accurate
subdivision point than that obtained with linear subdivision.

2. Adaptive sampling: We resample the contour points according to
the local curvature, vorticity and distance from the opposite
contour to depict the shape with fewer vertices.

3. Volume error correction: If we advect the marbling shape under
the fluid motion with a coarse grid, the volume error accumu-
lates slowly over time. We quickly correct this error by inflating
or shrinking the entire shape toward normal directions with
slight changes.

4. Shape simplification: We dynamically remove extremely thin
lines that are nearly invisible so the simulator will run more
smoothly. To do this, we detect and cut such regions, and then
reconstruct the contour connections. The simplification test can
be triggered at any time, particularly when the user desires,
because the collision can basically be ignored.

5. Rendering and export: The deformed marbled shape is rendered
through the graphics hardware or exported in an editable vector
graphics format.

2. Previous work

Our work is related to two categories of studies: the artistic
expression of fluids and surface tracking methods.

The most relevant field is the direct simulation of marbling. Acar
and Boulanger [2] attempted to reproduce visual marbling effects
using a physically derived flow model. They observed surface flow
based on mesoscale dynamics, and they produced fluctuation
effects at different scales. To advect clear silhouettes under Eulerian
grids, they employed B-spline interpolation and extended the
range of concentration temporarily in the semi-Lagrangian advec-
tion phase. However, Eulerian grid approximation is limited in
terms of the degree of resolution if we wish to obtain a reasonable
simulation. If we simulate with high resolution, a great deal of per-
pixel computation and memory is required. Zhao et al. [33]
developed a real-time marbling simulator that fully runs on the
GPU. They employed a third-order accurate, but fast, unsplit semi-
Lagrangian constrained interpolation profile method to reduce the
numerical dissipation while retaining stability. Although they
achieved 24 frames per second (FPS) at 1680 x 1050 grid resolu-
tion, the method was still inadequate for printing large materials
because the resolution was approximately 5 x 3 square inches at
350 dpi. Acar [1] also proposed a level set-based system that
provides a flexible environment for the user to generate traditional
marbling patterns in high resolution. However, real-time feedback
is still computationally expensive with this method.

Eden et al. [6] proposed a method for rendering liquids in a
cartoon-style manner. By exploiting a physically created fluid
surface, they rendered the effect by emphasizing the properties
of the liquid’s shape and motion, which were inspired by the
abstraction and simplification of cartoon animations. This method
resembles our own in that both have clear silhouettes and few
colors. However, they used an implicit contouring method as the
underlying liquid animation. Hence, the thin line detail is inher-
ently smoothed out before it is stylized.

Selle et al. [28] introduced a technique for generating cartoon-
style animations of smoke. Based on a physically based simulated
output, they traced marker particles and rendered them using
depth buffer differences to generate clear smoke animations.
McGuire and Fein [19] extended this technique and developed a
system for rendering real-time animations of smoke in addition to
introducing a novel self-shadowing algorithm. However, these

Download English Version:

https://daneshyari.com/en/article/10336441

Download Persian Version:

https://daneshyari.com/article/10336441

Daneshyari.com

https://daneshyari.com/en/article/10336441
https://daneshyari.com/article/10336441
https://daneshyari.com

