
Computers & Graphics 29 (2005) 3–15

Multimedia integration into the blue-c API

Martin Naefa,�, Oliver Staadtb, Markus Grossa

aComputer Graphics Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland
bComputer Science Department, University of California, Davis, USA

Abstract

In this article, we present the blue-c application programming interface (API) and discuss some of its performance

characteristics. The blue-c API is a software toolkit for media-rich, collaborative, immersive virtual reality applications.

It provides easy to use interfaces to all blue-c technology, including immersive projection, live 3D video acquisition and

streaming, audio, tracking, and gesture recognition. We emphasize on our performance-optimized 3D video handling

and rendering pipeline, which is capable of rendering 3D video inlays consisting of up to 30,000 fragments updated at

10Hz in real time, enabling remote users to meet inside our virtual environment.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Virtual reality software system; 3D video; Multimedia; Collaborative virtual environments; Telepresence

1. Introduction

The blue-c system [1] developed at ETH Zurich

provides a novel virtual environment which combines

immersive projection with 3D acquisition of the user,

allowing remotely located users to meet in a virtual

world. blue-c enabling technology includes custom

hardware [2] and a new real-time video acquisition and

transmission approach [3].

This paper discusses the multimedia integration into

the blue-c application programming interface (API), a

software toolkit that provides easy access to all under-

lying blue-c technology for the application developer. As

opposed to other virtual reality (VR) toolkits that try to

separate the VR-specific modules from the graphics

rendering and scene graph, the blue-c API tries to

integrate much of its functionality into the scene. This

helps to keep development interfaces and programming

patterns consistent throughout the system without

extensive code wrapping efforts. Besides providing

access to blue-c-specific technology such as real-time

3D video for telepresence, the blue-c API can also be

used as a general-purpose VR toolkit outside the blue-c

portals.

This paper focuses on 2D video and performance

aspects of our 3D video integration. It also briefly

introduces the software architecture. Those aspects

that are already covered in detail in [1,3,4]

will be omitted. After the system overview, the 2D

video system is analyzed. Motivated by the

rendering algorithms used for 3D video, we then

present a performance-optimized pipeline for turning

an incoming dynamic 3D video fragment stream

into a vertex array suited for high-performance render-

ing, discussing the various performance vs. quality

trade-offs.

The blue-c application programming environment

runs on SGI IRIXTM; Linux, and Microsoft

WindowsTM operating systems. The application code is

directly portable between the systems. The API itself has

some platform-dependent optimizations to use the

available hardware to its full potential.

ARTICLE IN PRESS

www.elsevier.com/locate/cag

0097-8493/$ - see front matter r 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2004.11.003

�Corresponding author.
E-mail addresses: mnaef@acm.org (M. Naef),

staadt@cs.ucdavis.edu (O. Staadt), grossm@inf.ethz.ch (M. Gross).

www.elsevier.com/locate/cag


The remainder of this paper is structured as follows:

Section 2 gives an overview of related work. Section 3

presents the system architecture of the blue-c API.

Multimedia services are presented in Section 4, the 3D

video service is in more detail in Section 5. We conclude

with applications in Section 6 and provide an outlook

into the future in Section 7.

2. Related work

Systems for VR are always combinations of many

different toolkits and software libraries. The blue-c API

is no exception in that respect. This section presents a

selection of previous work related to the blue-c API.

Numerous VR application development toolkits have

been implemented in the past. CAVElibTM development

was started with the initial CAVETM [5] system and is

available as a commercial product (www.vrco.com). It

supports device input through the trackd system. For

rendering, it relies on application-supplied OpenGL

code or the Performer scene graph system. Basic

networking code for clusters and collaboration is

provided, but there is no automatically shared scene

graph.

Juggler [6] provides a mature, object-oriented ap-

proach to VR. It is very actively supported. As opposed

to the blue-c API, but similar to CAVElibTM; Juggler
mostly leaves the choice of the rendering system to the

application developer and keeps only loose ties to the

scene graph. Juggler implements a kernel that keeps

several ‘‘manager’’ objects. This concept inspired the

blue-c API service structure.

Avango [7], formerly called Avocado, provides similar

functionality as the blue-c API. Avango exposes most

interfaces to its own scripting language. It is closely

coupled to OpenGL Performer, but it changes the scene

graph interface to an Inventor-style field system whereas

the blue-c API leaves the Performer interfaces un-

changed to better support legacy applications. Avango

relies on total network ordering and strict locking, which

imposes significantly higher requirements onto the

underlying network layer.

There is a plethora of toolkits available that provide

parts for VR systems, including tracking libraries [8,9],

scene graphs [10], networking tools [11], audio servers,

etc. Using them together to build a large VR system such

as the blue-c, however, requires to learn many different

interfaces and concepts, and finding ways to get them to

work together smoothly is not always trivial. For the

blue-c system, the aim was to provide a holistic,

consistent, and well integrated toolkit that provides

strong multimedia and basic collaboration support.

Unlike other toolkits that separate the scene graph

from the rest of the VR system for more flexibility, the

blue-c API integrates it into the core for more coherence,

allowing to integrate media handling directly into the

scene graph without compromising performance.

3. blue-c API system architecture

This section briefly introduces the system architecture

of the blue-c API, as presented in [12]. An overview of

all components and their main dependencies is given in

Fig. 1.

3.1. Core and process management

The blue-c core class is a small kernel that handles

system initialization and startup, instantiation and

discovery of services, runs the main application loop,

and takes care of a clean system shutdown. With the

exception of the scene synchronization system that only

spawns network transmission threads, most blue-c

services spawn individual calculation processes that

communicate through a shared arena that is managed

by the Performer scene graph system [13].

All process management and locking methods

are encapsulated by the API to provide platform

ARTICLE IN PRESS

Application

Core

Time Service

Graphics Rendering

Cluster Service

Distribution Service

Logging

3D Video Service

2D Video Service

3D Audio Service

Message Scheduler

Navigation

Picking

Tracking Services

Scene Graph

Sy
nc P

lug-ins

M
essages

bcl

Fig. 1. blue-c API system overview: Services accessing the scene graph, and message scheduler with sources and plug-ins.

M. Naef et al. / Computers & Graphics 29 (2005) 3–154

http://www.vrco.com


Download English Version:

https://daneshyari.com/en/article/10336484

Download Persian Version:

https://daneshyari.com/article/10336484

Daneshyari.com

https://daneshyari.com/en/article/10336484
https://daneshyari.com/article/10336484
https://daneshyari.com

