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Abstract

A rational cubic spline, with shape control parameters, has been discussed here with the view to its application in

computer graphics. It incorporates both conic sections and parametric cubic curves as special cases. An efficient scheme

is presented which constructs a curve interpolating a set of given data points and allows subsequent interactive

alteration of the shape of the curve by changing the shape control and shape preserving parameters associated with each

curve segment. The parameters (weights), in the description of the spline curve can be used to modify the shape of the

curve, locally and globally. The rational cubic spline retains parametric C2 smoothness. The stitching of the conic

segments also preserves C2 continuity at the neighboring given points. An exact derivative as well as a very simple

distance-based approximated derivative schemes are presented to calculate control points. The curve scheme is

interpolatory and can plot parabolic, hyperbolic, elliptic, and circular splines independently as well as segments of a

rational cubic spline. We discuss complex cases of elliptic arcs in space and introduce intermediate point interpolation

scheme which can force the curve to pass through a given point between any segments.
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1. Introduction

A common problem, in computer graphics, is to design

a curved outline by stitching small pieces of curves

together. Piecewise rational cubic spline functions provide

powerful tools for designing curves, surfaces, and some

analytic primitives such as conic sections that are widely

used in engineering design and various computer graphics

applications [1,2]. These applications may represent a font

outline [3,4], a rounded corner of an object, or may be a

smooth fit to given data [5,6]. Several curve segments that

compose a desired curve outline can have different

mathematical descriptions. For example, the outline of

the character ‘‘S’’ appears to be composed have straight

lines, conics, and cubics. A single mathematical formula-

tion for the precise definition of various types of geometry

shapes is one of the major advantages of the rational cubic

spline functions. Our research aims to develop a piecewise

parametric curve representation scheme capable of repre-

senting shape outlines.

In [7], C1 rational cubic splines with exact derivatives

at their control points were used. We introduce a similar

interpolant with a very simple distance-based approxi-

mated derivative scheme and achieve fine results. Our

scheme is also simpler than the area-based derivative

scheme in [8]. Our research describes a parametric C1

and C2 rational cubic spline representation possessing a

family of shape control parameters. This family of shape
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parameters has been utilized to produce straight line

segments, conics, and cubics. The ability to maintain a

reasonable amount of continuity (C2) between conic and

cubic arcs, estimated end derivatives, conic (circular,

elliptical, parabolic, and hyperbolic) splines, circular

arcs for given radius or center, elliptic arcs in space and

intermediate point interpolation are further achieve-

ments in this research. In [7,9], the end derivatives are

determined by the user, which is not convenient.

Moreover, conics were not discussed at all. We have

estimated most suitable end derivatives for more

pleasing results. In [10], cubic and conic segments are

joined with G1 continuity which is not acceptable for

some practical applications. The intermediate point

interpolation scheme and circular arcs, presented in

[11], are not practical as the space curves and exact

circular arcs in that way. Ref. [12] offered intermediate

point interpolation scheme with C0 continuity at

neighborhood points. Meek et al. [13] presented G1

continuity in their recent research work on constrained

guided curve scheme. They used a rational quadratic

function. We use a rational cubic function and achieve

better continuity (C2). In [14], a rational quadratic spline

is used to represent a circular spline. We have used a

rational cubic spline to achieve the same result.

We have used a very simple algorithm for any type of

planer or space curve with parallel or non-parallel end

tangents. Our scheme can generate exact circular and

elliptical arcs. We have applied degree elevation

techniques on rational quadratic spline as mentioned

in [15–17]. A Non-uniform rational B-spline (NURBS)

representation of an ellipse is given in [17]. We have

improved this technique to handle any type of elliptic

arcs, even space arcs. In addition, our scheme has the

following properties, which may lead to a more useful

approach to curve and surface design in CAGD.

� The curve has C2 continuity between the rational

cubic arcs and between cubic and conic arcs.

� Most suitable end derivatives are estimated.

� A distance-based approximated derivative scheme is

also used to compute the required control points.

Tangent vectors vary continuously along the curve

preserving C1 continuity.

� Any part of the rational cubic spline can represent a

conic (with exact circle and ellipse) or a straight line

segment using the same interpolant.

� An intermediate point interpolation scheme has been

introduced for use in guided curves.

� Our scheme can handle any kind of elliptic arc in space.

� Most of the results are visualized with their associated

curvature plots for easy comparison between different

schemes.

� The benefit of using such curves in the design of

surfaces, in particular surfaces of revolution and

swept surfaces, is the control of unwanted flat spots

and undulations.

This paper has been organized in such a way that a

parametric rational cubic spline scheme is considered in

the next section. The analysis of the designing curve is

presented in Section 3. The determination of the

approximated and exact tangents at the given points is

explained in Section 4. In this section, we also present a

scheme to calculate the end derivatives (tangents). We

discuss conditions for conics and straight line segments

in Section 5. This section also covers all types of circular

and elliptical arcs in space and introduces a very

powerful method for intermediate point interpolation.

Examples are discussed in Section 6. Finally, our

conclusions are presented in the last section.

2. The rational cubic spline

The cubic spline is the spline of the lowest degree with

C2 continuity. C2 continuity meets the needs of most

problems arising from engineering and mathematical

physics. Rational cubic spline functions of lower degree

are numerically simple, stable, and fundamental of all

rational space curves. Let F i 2 Rm; i ¼ 1; . . . ; n; be a

given set of points at the distinct knots ti 2 R, with unit

interval spacing. Consider a first degree parametric

piecewise rational function for the straight line segment

between F i and F iþ1

LðtÞ � LiðtÞ ¼
ð1� sÞaiF i þ sbiF iþ1

ð1� sÞai þ sbi

, (2.1)

where

s ¼
t � ti

hi

; hi ¼ tiþ1 � ti.

We apply degree elevation formula [1, p. 104] to get

quadratic rational Bézier function

QðtÞ � QiðtÞ

¼
ð1� sÞ2aiF i þ sð1� sÞgiU i þ s2biF iþ1

ð1� sÞ2ai þ sð1� sÞgi þ s2bi

, ð2:2Þ

where U i may be taken as the point of intersection of

tangents at F i and F iþ1 (see Fig. 1). Applying again

degree elevation, we get rational cubic Bézier function
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PðtÞ � PiðtÞ

¼
ð1� sÞ3aiF i þ sð1� sÞ2ðai þ giÞV i þ s2ð1� sÞðbi þ giÞW i þ s3biF iþ1

ð1� sÞ2ai þ sð1� sÞgi þ s2bi

, ð2:3Þ
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