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We discuss G' smoothness conditions for rectangular and triangular Gregory patches. We
then incorporate these G' conditions into a surface fitting algorithm. Knowledge of the
patch type is inconsequential to the formulation of the G' conditions, hence the term
agnostic G' Gregory surfaces.
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1. Introduction

Surfaces are used for many modeling purposes, ranging
from car bodies or airplane fuselages to objects in ani-
mated movies or interactive games. Depending on the
application at hand, different surface types are used, such
as spline surfaces [1] for the first two examples and subdi-
vision surfaces [2] for the last two.

Spline surfaces cover a model with rectangular patches,
which can create problems in areas where triangular
shapes are needed. Subdivision surfaces have potential
problems because direct evaluation is possibly slow [3].
For this reason, several authors have studied polynomial
or rational polynomial approximation subdivision surfaces
[4-6].

In this paper, we investigate spline-like surfaces which
cover a model by a mix of triangular and rectangular
patches. These are rational polynomial patches, first inves-
tigated by Gregory [7] in rectangular form and by Walton
and Meek [8] in triangular form. Our surfaces are G!, mean-
ing they have continuous tangent planes everywhere. This
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is in contrast to spline surfaces, which are typically second
order differentiable, or C%.

First we introduce rectangular and triangular Gregory
surfaces. Next we introduce our G! conditions. We then
incorporate these G' conditions into a surface fitting
algorithm.

2. Rectangular Gregory surfaces

A bicubic Bézier patch is given by a control net
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and, for a point b(u, #) on the patch:
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where the parametric domain is given by 0 < u, v < 1. The
3D points b; form a control net which determines the
shape of the patch.
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A “bicubic”! Gregory patch [9] is given by a control net of
the same structure but with variable interior control points
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The superscript 10 identifies Gregory control points
with greater influence on the boundaries, where u varies,
and likewise, the superscript 01 identifies Gregory points
with more influence on the boundaries, where v varies.
Fig. 1 illustrates a bicubic Gregory patch.

The eight interior control points might come from cross
boundary continuity conditions. In that context, we will be
interested in the degree 3 x 1 surface formed by the two
rows of control points along each edge, called the tangent
ribbon. Thus the tangent ribbon defines the tangent plane
along the boundary. The ribbons along v=0 and v=1 are
given by control points
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respectively. The ribbons along u =0 and u =1 are given by
control points
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respectively. Fig. 2 (left) illustrates a tangent ribbon for a
bicubic Bézier patch.

3. Triangular Gregory surfaces

A quartic triangular Bézier patch is given by the control
net
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and, for a point b(u, »,w) on the patch:

b(u, v,w) = | Z %u‘v’w"b,—jk,
i+j+k=4
where the parametric domain is given by barycentric coor-
dinates u+ v+w=1.
A triangular Gregory patch [8] is given by a control net
of the same structure but with variable interior control
points

! The so-called bicubic Gregory patch is rational and degree seven in
both u and ».

Fig. 1. Orange control points: A bicubic rectangular Gregory patch. Green
control points: a quartic triangular Gregory patch. Control points are
connected to the boundaries to which they yield more influence. (For
interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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The superscript 101 identifies a Gregory control point
with more influence on the (u,0,w) boundary, the super-
script 110 identifies a Gregory point with more influence
on the (u, 7,0) boundary, and the superscript 011 identifies
a Gregory point with more influence on the (0, z,w) bound-
ary. Fig. 1 illustrates a quartic triangular Gregory patch.

Here we will use a special quartic patch in which the
three quartic boundary curves are degree elevated cubics.
(This point will be revisited in Sections 4 and 5.) Let the cu-
bic representation of these boundary curves be as follows:
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Now the tangent ribbons are defined as follows. The rib-
bon along u =0 is given by control points
Coz0 Cizo
ot by
011
Coiz by,
Coo3  Ci02
The ribbon along v = 0 is given by control points
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The ribbon along w =0 is given by control points
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