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a b s t r a c t

Our goal is to find subdivision rules at creases in arbitrary degree subdivision for piece-
wise polynomial curves, but without introducing new control points e.g. by knot insertion.
Crease rules are well understood for low degree (cubic and lower) curves. We compare
three main approaches: knot insertion, ghost points, and modifying subdivision rules.
While knot insertion and ghost points work for arbitrary degrees for B-splines, these meth-
ods introduce unnecessary (ghost) control points.

The situation is not so simple in modifying subdivision rules. Based on subdivision and
subspace selection matrices, a novel approach to finding boundary and sharp subdivision
rules that generalises to any degree is presented. Our approach leads to new higher-degree
polynomial subdivision schemes with crease control without introducing new control
points.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

We wish to have arbitrary-degree subdivision surfaces
with creases and boundary conditions that are as robust
as those available for B-spline surfaces [8]. The existing
methods for degree 3 do not generalise to higher degrees.
We have analysed the problem and provide a general solu-
tion, with specific worked examples for degrees up to 7.
We present here our results for curves, which provide
the necessary precursor to the more challenging surface
cases.

Sharp creases and end-point interpolation (including
Bézier end-conditions) in B-spline curves (and by exten-
sion in tensor-product B-spline surfaces) are typically
achieved via multiple knots. Indeed, a knot of multiplicity
m reduces the continuity of a degree d B-spline to Cd�m

from the native Cd�1 continuity at single knots. Thus, to
create a crease, a knot of multiplicity d can be used. To
achieve Bézier end-conditions, knots of multiplicity dþ 1
are included at the start and end of knot vectors.

Instead of using multiple knots to achieve end-point
interpolation, one can use ghost (also known as phantom
or virtual) points. Depending on degree, several ghost
points are pre- and appended to the control polygon. These
are carefully placed (as linear combinations of existing
control points) so that the resulting curve satisfies given
end-conditions. This technique yields modified basis func-
tions formed as linear combinations of B-splines.

A popular alternative to using basis functions to evalu-
ate spline curves and surfaces is recursive subdivision
[18,20]. Creases and boundary interpolation rules can still
be obtained via multiple knots [17,16,12], but there is an
alternative available: smooth subdivision rules are modi-
fied to sharp ones [9,7]. This has the advantage over multi-
ple knots that the user does not need to interact with the
knot vector. The user marks control vertices of a curve
(edges in the surface case) as smooth (default) or sharp.
This leads to an intuitive modelling interface as no extra
control points are introduced, in contrast to knot insertion.

Motivated by these observations and the fact that sharp
rules have so far been limited to low-degree subdivision
[7,1,17,15,16,11,10], we investigate a more general setting
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for introducing sharp creases and boundary interpolation
rules in higher-degree spline curves. Our results then ex-
tend naturally to tensor-product surfaces and potentially
to higher-degree subdivision surfaces, such as those by
Stam [24] and Cashman [2].

The problem of finding crease rules, and our approach
to solving it, comprise our main contribution (Section 3).
We present case studies for odd degrees (Section 4) and
the more challenging even degrees (Section 5), demon-
strated on examples of B-spline subdivision curves with
creases. We show that relaxing some of our requirements
(Section 6) leads to interesting trade-offs between the sim-
plicity of subdivision rules and the behaviour of subdivi-
sion curves at creases and end-points. Before all this, we
present our notation and a summary of the necessary
underlying B-spline theory.

2. Preliminaries

Consider a polynomial spline curve of degree d and or-
der k ¼ dþ 1 given by the knot vector t ¼ ðt0; t1; . . . ; tnþdÞ; ti

6 tiþ1, where i ¼ 0; . . . ;nþ d� 1, and by n control points
Pi:

cðtÞ ¼
Xn�1

i¼0

Bi;kðtÞPi; tk�1 6 t 6 tn: ð1Þ

The B-splines Bi;k are defined recursively [6]:

Bi;1ðtÞ ¼
1 if ti 6 t < tiþ1;

0 otherwise;

�
Bi;k ¼

t � ti

tiþk�1 � ti
Bi;k�1ðtÞ þ

tiþk � t
tiþk � tiþ1

Biþ1;k�1ðtÞ;
ð2Þ

with the convention 0
0 ¼ 0. It is typically required that

ti < tiþd for all i ¼ 1; . . . ;n� 1. From this definition it fol-
lows that the support of Bi;k, i.e., the closure of the interval
where it is non-zero, is ½ti; tiþk�.

While many of the ideas that we explore below can be
applied in the general setting of non-uniform knot vectors,
we focus on initially uniform knot vectors ti ¼ i, but knots
are subsequently allowed to become multiple. An example
of uniform B-splines is shown in Fig. 1a. To achieve Bézier
end-conditions, an open-uniform knot vector (end knots
have multiplicity k) can be used; see Fig. 1b.

2.1. B-spline creases

The typical B-spline approach to creating sharp creases
is by using multiple knots. This follows from the fact that
the continuity of a B-spline of degree d at a knot of multi-
plicity m is Cd�m. In the cubic case, a triple knot is used. For
an existing curve, there are two variants. First, one moves
two knots to create three coalescing knots, i.e., a triple
knot; see Fig. 1c. Second, one inserts a desired knot several
times until its multiplicity reaches m ¼ d; see Fig. 1d. This
introduces new control points that the user can freely
move around. While valid and popular, these solutions
are not ideal, especially when generalised to tensor-prod-
uct surfaces, for the following reasons:

� the user needs to have access to the knot vector and
understand how creating and moving multiple knots
influences the shape of a curve or surface;

(a)

(b)

(c)

(d)

(f)

(g)

(e)

Fig. 1. A comparison of various cubic splines (left) and the basis functions
(right) used to generate them. All basis functions are either cubic B-splines
or obtained as their linear combinations. (a–d) The flexibility offered by
modelling systems that allow the user to modify knot vectors. Note that (c)
results from (d) by moving two knots to create a knot of multiplicity 3. (e)
The effect of a triple control point (cyan) and the corresponding basis. (f)
Ghost points can be used to force end-point interpolation without
modifying the knot vector. (g) Modifying subdivision rules to allow for
control points to be tagged either as smooth (default) or sharp (green) offers
intuitive control over the resulting spline. End-points are marked as sharp
implicitly even for smooth curves (shown in grey) that have no internal
points marked as sharp. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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