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Spatially constrained Dirichlet process mixture models are springing up in image
processing in recent years. However, inference for the model is NP-hard. Gibbs sampling
which is a generic Markov chain Monte Carlo technique is commonly employed for the
model inference. It needs to traverse all the nodes of the constructed graph in each
iteration. The sampling process hardly crosses over the intermediate low probabilistic
state. In addition, it is not well informed by the spatial relationship in the sampling process.
In this paper, a spatially dependent split-merge algorithm for sampling the MRF/DPMM
model based on Swendsen-Wang Cuts is proposed. It is a state of the art algorithm which
combines the spatial relationship to direct the sampling, and lessen the mixing time
drastically. In this algorithm, a set of nodes are being frozen together according to the
discriminative probability of the edges between neighboring nodes. The frozen nodes
update their states simultaneously in contrast to the single node update in a Gibbs
sampling. The final step of the algorithm is to accept the proposed new state according
to the Metropolis Hasting scheme, in which only the ratio of posterior distribution needs
to be calculated in each iteration. Experimental results demonstrated that the proposed
sampling algorithm is able to reduce the mixing time considerably. At the same time, it
can obtain comparably stable results with a random initial state.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

observed data varies in a wide range. A Dirichlet process
framework is an advanced model that can determine the

The Dirichlet Process (DP) [1] draws much attention in
machine learning such as natural language processing [2],
object recognition [3,4], image retrieval [5], topic modeling
[6], and image segmentation [7,8] in recent years. A notori-
ous property that a DP model owns is the model selection.
Algorithms such as K-means clustering, histogram cluster-
ing and Gaussian mixture model clustering need determine
the number of clusters in advance. However, the fixed num-
ber of clusters always leads to undesirable results as the
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number of clusters from the observed data dynamically.
The Dirichlet process mixture model (DPMM) [9] is a
practical model of DP. It is employed to perform model
selections in various applications [2-8]. However, in some
specific domains such as image processing, a DPMM is
always combined with other spatial relationship con-
strained models since the spatial relationship always plays
a significant role in the model selection. Models presented
in literature [7-15] are several typical spatially constrained
Dirichlet process mixture models (SCDPMM). With the
model constructed, inference is crucial to obtain the final
solution. Exact inference for the DPMM is impractical since
it is difficult to handle the infinite number of components

Please cite this article in press as: X. Wang, ]. Zhao, Swendsen-Wang Cuts sampling for spatially constrained Dirichlet process mixture
models, Graph. Models (2014), http://dx.doi.org/10.1016/j.gmod.2014.03.008



http://dx.doi.org/10.1016/j.gmod.2014.03.008
mailto:xiang_rong_wang@163.com
mailto:zhao_jieyu@ nbu.edu.cn
mailto:zhao_jieyu@ nbu.edu.cn
http://dx.doi.org/10.1016/j.gmod.2014.03.008
http://www.sciencedirect.com/science/journal/15240703
http://www.elsevier.com/locate/gmod
http://dx.doi.org/10.1016/j.gmod.2014.03.008

2 X. Wang, J. Zhao / Graphical Models xxx (2014) xxx-xxx

in specific applications. Naturally, various approximations
methodologies have been proposed to solve the inference
problems. All of these methodologies can be divided into
two categories: the Markov Chain Monte Calo (MCMC)
[9,16] and the variational inference [17,18]. In a variational
inference, a gradient descent scheme is designed to search
the local minima and its efficiency is largely dependent on
the choice of the initial point. Unlike the variational infer-
ence, the MCMC approach employs a probabilistic scheme
to draw a set of samples from the target distribution and
achieves the final solution through statistical methods.
Markov chains are designed in these algorithms to traverse
the state space and derives relatively accurate estimates of
the solutions.

In this paper, attention will be paid to the MCMC sam-
pling methods. The MCMC sampler draws a set of samples
from the posterior distribution and derives the empirical
posterior distribution from these drawn samples. In order
to sample the complicated true posterior distribution
efficiently, a Markov chain with the target posterior as the
limiting distribution is constructed. The widely used MCMC
sampling for the DPMM model is an incremental Gibbs sam-
pling [19-22], which is the simplest version of the MCMC.
However, the Gibbs sampling updates only one variable at
a time and it is hard to cross over the intermediate
low-probability states, which leads to slow convergence. A
spit-merge sampling algorithm [23-25] is proposed to sur-
mount the obstacle by splitting or merging a set of variables,
as well as it can keep detail balance of the Markov chain by
employing the Metropolis-Hasting scheme [26,27].

It is even more complicated while sampling the
SCDPMM such as the MRF/DPMM model since the extra
interaction between the spatially adjacent observations
makes them mutually dependent. The available sampling
algorithms [7,10,9,16] for the DPMM in the literature are
not suitable for the SCDPMM since these algorithms are
not well informed by the input data to adjust the sampling
course which leads to a long mixing time.

We propose a new Swendsen-Wang Cuts [28,29] based
sampling algorithm for the MRF/DPMM model in this
paper. In the MRF/DPMM model, a Dirichlet process prior
is considered as an external field of a Markov random field
(MRF), and functions as a model selector. From this view-
point, a Dirichlet process prior does not violate the law of
the MRF. Therefore, the MRF/DPMM model is still a Markov
random field in essence. Sampling this model is very like
sampling a MRF model. A Swendsen-Wang Cuts sampler
is a reasonable choice for the model inference. In our pro-
posed algorithm, the whole process is divided into three
steps. The first step is to sample the edge variables intro-
duced into the algorithm. Each edge will be frozen or bro-
ken up probabilistically. Then a set of connected
components are formed according to the frozen edges.
The second step is to sample the cluster label, in which a
new candidate label is assigned to the selected component.
In the last step the new label will be accepted or rejected
according to the Metropolis-Hasting scheme. The DP prior
in the model will affect the sampling path through the
acceptance ratio which is the key to the SWC sampling
algorithm. The first two steps of our algorithm are similar
to those in the generic SWC algorithm. Experimental

results show that the performance of the proposed SWC
algorithm has been greatly improved in contrast to that
of a Gibbs sampler or a split-merge sampler.

2. Dirichlet process related models
2.1. The Dirichlet process

The Dirichlet process is a Bayesian nonparametric
model. It can be characterized by a base distribution G
and an innovation parameter «, denoted as DP(Go, o). Let
G be a discrete distribution which is drawn from the DP.
{®;}1, is a set of variables that follows the distribution
G. Thus the DP model can be described as

G | Go, o ~ DP(Go, o) (1)
0;|G~G i=1,...,n (2)

From the formulation [11], we can see that a DP is a distri-
bution placed over the distribution G, which is discrete with
a probability 1. In order to sample this model conveniently,
the random distribution G is integrated out from the model.
With this operation, a new representation for the DP is
derived. Specifically, given the n — 1 samples drawn from
G, {@i}?j, a new sample @, can be selected from the exist-
ing n — 1 samples or drawn from the base distribution G,.

Let {©;}F | be the set of distinct values of the variables

{6}, and n"! be the number of @ that take value @.
The conditional probability of ®, takes the form [11]

P(@n [ {01}, Go.0)
o S

:fx+n—lGO+;rx+n—lo@5 3)
where d4: denotes the mass probability concentrated at a sin-
gle point ®;. From this representation of the DP, several
important properties can be easily observed. Above all, the
innovation parameter o decides how often to generate a
new distinct ©;. As o increases, it is more likely to draw a
new distinct parameter from the base distribution G,. At its
limit, G will approach Go. On the contrary, when o approaches
0, all the samples tend to cluster into one class. This clustering
effect of the model makes it universally applied in many
clustering problems. The second important property is that
the more the value is shared among the variables, the more
probable it will be taken in the subsequent sampling.

In the Bayesian context, we can explain (3) another way
[7]. Assume {@;}"7 is drawn independently from the
Dirichlet process, and let (A;H be the empirical distribution
of the variable set {©;}~

Gn1= L] Zagi (4)

n-—

Then the posterior distribution G conditioned on the exist-
ing drawn samples is also a Dirichlet process
G {@}i5 ~DP(aGy + (1~ 1)Gy1) (5)

Thus Eq. (3) is obtained. In order to draw the sequence
{©;}{, from the random measure G ~ DP(Gy, ®), the first
sample is drawn according to
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