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We present an algorithm for robustly analyzing point data arising from sampling a 2D surface

embedded in 3D, even in the presence of noise and non-uniform sampling. The algorithm outputs,

for each data point, a surface normal, a local surface approximation in the form of a one-ring, the local

shape (flat, ridge, bowl, saddle, sharp edge, corner, boundary), the feature size, and a confidence value

that can be used to determine areas where the sampling is poor or not surface-like.

We show that the normal estimation out-performs traditional fitting approaches, especially when

the data points are non-uniformly sampled and in areas of high curvature. We demonstrate surface

reconstruction, parameterization, and smoothing using the one-ring neighborhood at each point as an

approximation of the full mesh structure.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We present an algorithm for estimating surface normals and
local shape from point data that is sampled from a 2D surface
embedded in 3D space. We show that our algorithm is robust in
the presence of both noise and non-uniform sampling. For each
data point the algorithm produces a surface normal, a local
surface approximation in the form of a one-ring, a local estimate
of shape (flat, bowl, saddle, ridge, edge, corner, or boundary), a
measure of the feature size, and a confidence value. This value
reflects both the quality of the local sampling and noise in the
function and can be used to detect places where the points do not
represent a surface. The one-ring neighborhood can be used for
further mesh processing such as reconstruction, smoothing or
spectral mesh processing.

Traditional normal estimation approaches usually rely on fitting a
local surface approximation to some subset of the k-nearest neigh-
bors [1]. This approach works well most of the time, but it has several
limitations (see Fig. 1). First, if the data are non-uniformly distributed,
the fitting error becomes biased—the classic example of this is
contour data, where the best planar fit can be perpendicular to the
surface. Second, the local surface approximation may not have
enough flexibility to match the surface, which introduces additional
error and increases the sensitivity to non-uniformly distributed data.

Increasing the flexibility of the representation, unfortunately, can lead
to over-fitting. Third, there is no method for distinguishing between
noisy data and poor local fit, or determining if the local samples even
represent a surface.

Our fundamental idea is to build three different representa-
tions of the local surface—a surface normal, a good-quality one-
ring, and a local shape model—and cross-validate them. If all
three representations are mutually consistent with each other and

the data, then we can be reasonably confident that they are
correct. In this we are closer in spirit to approaches that use
robust statistics [2,3]. We also gain a lot of information about the
samples, namely how much noise is present, how even the
sampling is, if there are sharp features or boundaries, the local
feature size, and a plausible graph structure. There are several
approaches that use one of these pieces of information to derive

another—for example, normals from the graph structure [4]—but
to our knowledge no-one else has used cross-validation to
improve normal estimation and surface analysis.

We show that cross-validation produces better-quality nor-
mals than standard fitting approaches, particularly in areas with
uneven sampling and high curvature. Not only are the averages
better, but the variance is narrower, meaning we are less likely to
return a ‘‘wrong’’ result. This is particularly true in saddle and
ridge areas. Our approach also behaves well near boundaries and
sharp features, and can explicitly identify them.

We make use of three observations. The first is that, locally,
smooth surfaces are either flat (zero curvature), ridges (zero
curvature in one direction), bowls (positive curvature), or saddles
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(negative curvature). Given a known surface normal, we evaluate
whether or not the data can be plausibly explained by one of
these models (Section 5). If it can’t, then either the surface normal
is wrong or the data points do not, locally, form a surface. Second,
a good-quality one-ring approximation of the surface—one that
has roughly equal-sized, equilateral triangles—is the best method
for estimating the normal because it does not suffer from
inadvertent smoothing or over-fitting. (Smoothing can always
be applied in a post-processing step if desired—see Section 8.)
Third, the one-ring and the normal should be mutually
consistent—projecting the data points onto the tangent plane
should yield the same one-ring (Section 4). This is particularly
important around ridges with high curvature, where the range of
valid normals is small.

We use a combination of optimization and validation to find
the surface normal, one-ring, and local surface model that are
mutually consistent. We define evaluation scores for the shape
models (Section 5) and for the one-ring (Section 4) along with
cross-validation criteria (Section 3). Note that the search space is
discrete—there are an enumerable number of one-rings. We use
this fact to develop a heuristic algorithm that generates valid one-
ring candidates and then optimizes them (Section 3).

We evaluate our normal construction and shape classification
using both real and test data (Section 7). We demonstrate the
usefulness of our one-rings for both surface reconstruction and
smoothing (Section 8). Our contributions are:

� Robust normals even in the presence of noise in the data and
non-uniform sampling.
� Construction of a well-behaved, minimal one-ring neighbor-

hood from the k-nearest neighbors.
� Local shape estimation (flat, bowl, saddle, ridge, corner, sharp

edge, or boundary).
� An optimization algorithm to find the above that cross-

validates the results.
� Identification of outliers and poorly reconstructed areas.
� Two novel surface reconstruction algorithms based on the

constructed one-rings.

Source code is available at https://sourceforge.net/projects/
meshprocessing/.

2. Related work

One approach to normal estimation is surface reconstruction,
either local [2] or global [5,6]. In the case of noise-free and dense
sampling, several global, Delaunay-based techniques exist for
accurate normal and feature size approximations [6–8]. In the
presence of noise, however, these reconstructions can be incor-
rect. Recent work [9] extends this approach to noisy data by using
an adaptive threshold to cull Delaunay balls that arise due to
noise. We compare our local approach to this one and show that,
particularly for unevenly sampled data, our normal reconstruc-
tion is more accurate (Table 1). However, the global approach can
be more accurate in cases where the between sample distance is
less than the between surface distance (Section 7.2).

The most common approach to normal estimation is plane
fitting. Mitra and Nguyen [10] provide a formula for estimating
the best number of neighbors, k, to use based on estimates of the
noise and local curvature. They then calculate the normal by
plane fitting and show that adaptively choosing k increases the
accuracy of the normal estimation. The fitting approach was
extended to quadratic and cubic surfaces with normal-based
weights [11] which provide a better approximation in the
presence of noise. A recent survey [1] also found quadratic fitting
more accurate for moderate noise, although for very high noise
planar fitting was better. We compare our approach to both
planar, quadratic, and cubic fitting and show that, particularly
for areas of high curvature and uneven sampling, our approach
outperforms these surface fitting approaches (Section 7). This is
because irregular sampling can easily ‘‘pull’’ the fitted surface
away from the average, due to the nature of linear regression. This
effect is worse when the underlying shape, such as a corner,
cannot be approximated by the fitted surface (plane, quadric, or
cubic).

Fig. 1. Black is true normal, red is plane fitting, green is quadratic, and blue cubic: (a) more samples on one side than the other pull the normal estimation in that direction;

(b) increasing the curvature (same samples) results in error in the normal; (c) two views, contour sampling—more samples on the right contour pull the normal in that

direction; and (d) weighted fit (cyan arrow) can exacerbate the problem. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Table 1
Comparison to known normals. Bunny is a sparse (2002) downsampling of the original data set, 2-holed mug is a contoured, undersampled smooth surface, dragon is a

Marching Cubes mesh, gargoyle is a full laser scan data set, figure is an evenly sampled, C4 surface with known normals, and radius is a contour data set from a CT SCan.

Given is the average and standard deviation of the dot product of the calculated normal with the known one. Best is in bold.

Bunny Mug Dragon Gargoyle Figure Radius

Ours 0.981, 0.057 0.909, 0.215 0.996, 0.033 0.999, 0.063 0.984, 0.063 0.989, 0.057
SVD 0.935, 0.149 0.758, 0.348 0.990, 0.053 0.995, 0.019 0.974, 0.086 0.973, 0.116

Quad 0.880, 0.204 0.747, 0.321 0.968, 0.102 0.974, 0.073 0.928, 0.147 0.961, 0.115

Cubic 0.860, 0.230 0.678, 0.341 0.968, 0.105 0.977, 0.071 0.924, 0.162 0.956, 0.131

Del 0.952, 0.121 0.951, 0.102 0.985, 0.032 0.991, 0.022 0.974, 0.080 0.979, 0.083
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