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a b s t r a c t

In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased
patient registration framework. Both segmentation and registration problems are modeled using a uni-
fied pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain.
Segmentation is addressed based on pattern classification techniques, while registration is performed by
maximizing the similarity between volumes and is modular with respect to the matching criterion. The
two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of
high classification score and high dissimilarity between volumes. In order to overcome the main short-
comings of discrete approaches regarding appropriate sampling of the solution space as well as important
memory requirements, content driven samplings of the discrete displacement set and the sparse grid are
considered, based on the local segmentation and registration uncertainties recovered by the min mar-
ginal energies. State of the art results on a substantial low-grade glioma database demonstrate the poten-
tial of our method, while our proposed approach shows maintained performance and strongly reduced
complexity of the model.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Gliomas are the most common type of primary brain tumors
and arise from glial cells. They are classified in 4 grades by the
World Health Organization (WHO), grade I corresponding to be-
nign tumors with excellent prognosis and Grade IV gliomas (Glio-
blastoma Multiforme) being the most common and lethal. WHO
grade II Low Grade Gliomas (LGG) are a specific kind of glioma that
represent about 30% of the brain tumors and can affect younger pa-
tients (Soffietti et al., 2010). They are characterized by a continuous
slow growth and yield mild symptoms. They generally undergo
anaplastic transformation into a fast growing malignant tumors
and therefore have to be monitored closely via frequent MRIs.
Knowing the size and extent of a brain tumor is of extreme impor-
tance in order to evaluate its growth, its reaction to therapy and for

surgery planning. Currently, the physicists compute the main
tumor diameters and approximate it as an ellipsoid, a highly
imprecise measure that tends to overestimate the volume of the
tumor (Pallud et al., 2012). The current gold standard is manual
segmentation, which on top of being a tedious and time consuming
task, is also subject to a high inter and intra operator variability.
Automatic tumor segmentation is thus an active research field that
aims at obtaining fast and robust segmentations. It is a particularly
difficult subject due to the extreme heterogeneity between the
tumors in appearance, shapes and size and their overlapping inten-
sities with the healthy tissue. LGG are diffusively infiltrative
tumors with extremely irregular and fuzzy boundaries, rendering
the segmentation task even more difficult.

Fuzzy clustering and knowledge based methods were amongst
the first considered for tumor segmentation with limited success
(Clark et al., 1998; Fletcher-Heath et al., 2001). Level sets and
Active Contours have been a popular approach (Ho et al., 2002;
Cobzas et al., 2007; Taheri et al., 2010), but suffer from their strong
sensitivity to initialization. The idea is to model the tumor bound-
ary as a parametric curve that evolves depending on the image
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properties and curvature constraints. Statistical classification
methods offer an efficient way of detecting tumor voxels. The vox-
els are treated independently and separated by a classifier that is
learned from a set of training samples. Examples refer to the Sup-
port Vector Machines (SVM) (Verma et al., 2008; Zhang et al., 2004;
García and Moreno, 2004), Boosting (Xuan and Liao, 2007) or the
Decision Forests (Zikic et al., 2012). Despite promising perfor-
mance, those methods are plagued by the i.i.d assumption that
treats each voxel independently, leading to irregular segmenta-
tions. Morphological filtering (Zhang et al., 2004) or neighborhood
dependent features (Zikic et al., 2012) offer limited improvement
on the local consistency of the segmentation. Notable improve-
ment is observed when coupling the statistical classification with
local neighborhood dependencies (Lee et al., 2008; Görlitz et al.,
2007; Wels et al., 2008; Bauer et al., 2011), modeled by a random
field (Markov Random Field (MRF), Conditional Random Field
(CRF)) (Wang et al., 2013) based spatial prior. In this context, the
segmentation is locally smoothed by penalizing neighbors that
are assigned different segmentation labels, but still lacks global
information regarding the tumor’s position and the brain bound-
aries. Stronger dependencies can be modeled via a hierarchical ap-
proach. Gering et al. (2002) proposed a multi layer MRF approach
where the tumor is detected as an outlier from manually selected
training voxels. At each layer, the segmentation is refined based on
higher level information and the previous layer’s segmentation.
Corso et al. (2008) combine Bayesian classification using Gaussian
Mixture Models with a hierarchical graph affinity model, where the
spatial dependencies are modeled by assigning an affinity to each
graph edge.

Atlas-based segmentation methods rely on the registration of
an annotated volume to the subject in order to segment the struc-
tures of interest. The use of a brain atlas allows for structural spa-
tial prior information, but the task is more difficult when the
structure to segment is a tumor since it cannot be matched in
the atlas. That is often addressed through a model for tumor detec-
tion. Kaus et al. (2001) alternate kNN classification based on inten-
sity and anatomical location with a registration step based on the
structures’ segmentation, the tumor being labeled as white matter
in the registration process. In Prastawa et al. (2003) a probabilistic
atlas is affinely registered to the patient, enabling to define prior
probabilities on the expected intensities of the structures. The atlas
is modified to account for tumor presence (detected by contrast
enhancement) and edema. Similarly to Gering et al. (2002), the tu-
mor voxels can be detected as outliers from the healthy voxels
(Menze et al., 2010; Prastawa et al., 2004). The healthy structures’
features are estimated from a registered healthy atlas. Additional
local spatial constraints are modeled via Markov Random Fields
(Menze et al., 2010) or level sets (Prastawa et al., 2004).

Atlas based methods depend on the quality of the registration.
Rigid or affine registration methods are not sufficient to recover
the inter patient anatomical differences, while traditional non-
rigid registration methods fail in this context by attempting to find
correspondences between the tumor and the healthy voxels. An
efficient atlas based segmentation thus requires a registration
scheme that accommodates for the presence of the tumor.

Despite extensive work in deformable image registration (Zikic
et al., 2010; Ou et al., 2011; Berendsen et al., 2013; Sotiras et al.,
2013), there has been limited work dedicated to registration with
missing correspondences. Such a registration task is of high inter-
est for the study of brain tumors through statistical atlases and lon-
gitudinal studies. A tumor specific probabilistic atlas, constructed
through affine registration of a large database to the same refer-
ence coordinates, was notably proposed in Parisot et al. (2011). It
enabled the identification of preferential locations for the tumors
and could lead to unraveling position dependent behaviors and ori-
gins. Deformable registration would enable to go further and study

the interactions between the tumors and the brain structures and
functional areas. Understanding the tumors growth patterns and
their impact on the brain’s functional organization is of key impor-
tance for therapy and surgery planning.

We can distinguish two groups of methods for registration in the
presence of a tumor. The first relies on modeling the tumor growth
to evaluate the tumor induced deformation (Kyriacou et al., 1999;
Mohamed et al., 2006; Zacharaki et al., 2008; Cuadra et al., 2004).
Kyriacou et al. (1999) proposed a biomechanical finite element
model to simulate the tumor induced deformation while assuming
a radial uniform growth of the tumor. Using the tumor growth mod-
el, a healthy brain was simulated by contracting the tumor, allow-
ing for a normal registration process. Cuadra et al. (2004) also
assumed radial growth of the tumor. The registration is performed
using the demons algorithm (Thirion, 1998) between healthy vox-
els and is based on the distance from a manually selected seed in
the tumor area (that has been segmented prior to the registration
process). Mohamed et al. (2006) decomposed the deformation as
inter subject and tumor induced deformations. The latter was mod-
eled via a biomechanical finite element model whose parameters
are learned by statistical learning. The tumor growth is then simu-
lated in the healthy atlas, enabling normal registration. This
method was extended in Zacharaki et al. (2008) towards a compu-
tationally efficient biomechanical model taking into account the
potential infiltrative parts of the tumor by limiting the tumor
growth. Growth models require either user interaction or extensive
computations to evaluate the model parameters and are mostly
adapted to space occupying lesions. Low grade gliomas are infiltra-
tive tumors with little to no mass effect and edemas. The limited
amount of deformation caused by the tumors renders the use of
growth model not adapted and possible prone to errors assuming
the tumor pushes tissue instead of infiltrating it. The second group
of methods (Brett et al., 2001; Stefanescu et al., 2004) adopts a sim-
pler approach and masks the pathology towards excluding it during
registration. The tumor area is discarded during the computation of
the similarity criterion and deformed by interpolation. This kind of
approach offers a better modularity with respect to the pathology
since no assumption is made about the pathological area nor the
progression of the tumor. Both approaches require a reliable seg-
mentation of the tumor, making the registration dependent on
the quality of the segmentation of the tumor.

Registration and tumor segmentation appear as two fundamen-
tally correlated problems, where one could benefit from the other
if performed simultaneously. The idea of coupling segmentation
and registration is not a new concept. Yezzi et al. (2003) used an ac-
tive contour framework, estimating the registration parameters and
reference volume’s segmentation curve by minimizing a joint energy
depending on both images. The floating image is segmented by reg-
istering the reference’s segmentation. A maximum a posteriori
framework was presented in Wyatt and Noble (2003) where the
segmentation and rigid registration parameters are determined
alternatively. The segmentation relies on Gaussian Mixture Models
coupled with an MRF prior, while the registration relies on the seg-
mentation by minimizing the joint class histogram between both
images. Mahapatra and Sun (2012) proposed an MRF based frame-
work where each voxel of the image has to be assigned a displace-
ment and segmentation label. The different classes are separated
based on the intensities in both images while the registration relies
on minimizing conventional similarity metrics. The registration and
segmentation fields are smoothed by enforcing similar displace-
ment among voxels of the same class. Ashburner and Friston
(2005) proposed a statistical model, where a probabilistic atlas plays
the part of a spatial prior for segmentation and bias field correction.
The different classes are separated via a mixture of Gaussians, allow-
ing for several modes per class. The atlas is globally registered by af-
fine registration then locally deformed. Last but not least, Pohl et al.
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