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Abstract

A bisection sampling method is implemented in the framework of a quantized classical path algorithm to include nuclear quantum effects

in path integral simulations. The present study examines the convergence of these calculations on two model systems with respect to the

number of beads used in the polymer chain and the number of configurations both in free-particle sampling and in classical configuration

sampling. The results will be useful for future studies of kinetic isotope effects in enzymatic reactions.
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1. Introduction

Proton and hydride transfer reactions play an important

role in many chemical and enzymatic reactions, and

numerous studies of these processes in the gas phase,

solution phase, and enzymes have been carried out. In

particular, the significant role of quantum mechanical (QM)

dynamical effects in enzyme catalysis has received

considerable attention, evidenced by the unusual experi-

mental kinetic isotope effects in several enzyme systems

including the hydride transfer reaction in liver alcohol

dehydrogenase and the proton transfer reaction in methy-

lamine dehydrogenase [1–6]. Furthermore, a number of

theoretical studies have shown that quantization of bound

vibrational motions, especially the inclusion of zero point

energy, can significantly reduce the free energies of

activation of enzyme reactions [7–9]. Although methods

that incorporate quantum mechanical dynamical effects in

gas phase reactions have been well-established, enzymatic

and condensed phase reactions require a method that can be

used to average quantum effects over a myriad of

conformations [10,11]. This is most easily accomplished

by computing the potential of mean force (PMF) along a

reaction coordinate using classical Monte Carlo or molecular

dynamics simulations [12–14], and then, the effects of

quantized molecular vibrations and quantum mechanical

tunneling are incorporated into the rate calculation by a

transmission coefficient [8,9,11,14–16]. Thus,

kqu ¼ gkTST (1)

where kqu is the quantum mechanical rate constant and kTST

is the classical transition state theory (TST) rate constant. In

general, the transmission coefficient in Eq. (1) is a product of

the deviation from equilibrium behavior, the classical

dynamic recrossing factor, G, and the quantum mechanical

correction, k [16]. The latter is defined as

k ¼ e�bðG 6¼
qm�G

6¼
TST

Þ (2)

where b = 1/kBT, kB is Boltzmann’s constant, T is the

temperature, and G 6¼
qm and G 6¼

TST are the quantum and classi-

cal free energy of activation, respectively.

Previously, we have adopted this strategy by using a

semiclassical theory that incorporates multidimensional

tunneling contributions, and we have successfully applied

this ensemble-averaged variational transition state theory

(EA-VTST) to several enzymatic reactions with excellent
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agreement between the calculated and experimental kinetic

isotope effects [17]. An alternative approach is to use the

path integral formulation of quantum mechanics, in which

the isomorphism between the discretized path integral (DPI)

and a classical system allows one to evaluate quantum

effects using classical simulation techniques [18–20]. Here,

a quantum particle is represented by a ring of classical beads

with their effective interaction described by a harmonic

potential that has a force constant proportional to the number

of classical particles in the chain, P [19]. At the limit of

infinitely large P, the correspondence of the equilibrium

properties of a quantum system and the isomorphic classical

system is exact. The DPI approach is particularly suited for

systems with a large number of degrees of freedom, such as

condensed phase solute/solvent systems or macromolecular

biomolecules.

In principle, the quantum mechanical free energy of

activation, G 6¼
qm, can be obtained directly by using centroid

path integral molecular dynamics simulations [21–24].

However, it is more convenient to evaluate the free energy

difference, G 6¼
qm � G 6¼

TST, in Eq. (2), by making a quantum

correction to the classical mechanical (CM) potential of

mean force evaluated from molecular dynamics simulations

[15,25–27]. This correction can be enumerated either by

Monte Carlo or molecular dynamics simulations over the

classical trajectories. To this end, Sprik et al. [25] described

a procedure to obtain properties by averaging quantum

corrections over classical configurations, through free-

particle path integral sampling by constraining the center

of mass (centroid) of the beads within a small cubic volume.

hAi ¼ hhAiFPK i (3)

In Eq. (3), the inner average hAiFPK represents the quantum

average of property A by free-particle path integral over a

fixed configuration K obtained from a separate, classical

Monte Carlo simulation. The outer average is over these

Monte Carlo configurations. This double averaging strategy

was further exploited by Warshel and coworkers [15], who

constrained the centroid position of the quantized particle to

that of the corresponding classical coordinates [26–28]. This

procedure, termed the quantized classical path (QCP), uti-

lizes the trajectory obtained from classical mechanics simu-

lations to obtain the QM correction by performing free-

particle path integral averaging with the centroid con-

strained to the classical position. The QCP method is well

suited to treat nuclear QM effects of large macromolecular

systems, and has been applied to several enzymatic systems

and has been compared to experimental and exact theoretical

results with good agreement [15,26,29,30].

However, the convergence in PI implementations in

general and in the QCP method in particular is not a trivial

matter. Although a number of techniques for free-particle

path integral sampling have been proposed [31], it appears

that a direct sampling procedure was used in previous QCP

applications to enzymatic reactions. A detailed description

of the method was presented by Aqvist and coworkers who

applied the QCP approach to the calculation of the kinetic

isotope effect in the proton transfer reaction catalyzed by

Glyoxalase I [29]. In this study, 20 beads were employed to

describe the quantized particles, and 1, 5, and 10 Monte

Carlo Metropolis steps were used to obtain the quantum

correction for each classical configuration. In another

calculation, a total of 20,000 free-particle configurations

were used for 18 beads along the entire reaction coordinate

for an enzymatic reaction [30]. However, other studies

suggest that extensive path integral sampling is needed even

for a dilute hard-sphere system [25], and it appears that a

detailed study of the convergence behavior of the QCP

method is desirable.

In this study, we report an implementation of the quantum

correction algorithm, employing an efficient bisection

method [31] coupled with the QCP approach to perform

path integral sampling (BQCP), and present a detailed

analysis of the convergence of the method for model

systems.

2. Theoretical background

The canonical QM partition function of the system is

written as an integral over the trace of the density matrix:

Qqu ¼
Z

dxrðx; x;bÞ (4)

where b = 1/kBT, and the coordinate representation of the

density operator is r(x,x;b) � hxje�bHjxi, in which H is the

Hamiltonian operator of the system. For convenience of

presentation, we limit our discussion to one dimension. In

the path integral formulation, the density operator is written

as integrals over all possible paths of the particles in the

system:

rðx; x;bÞ ¼
Z
xð0Þ¼xðb�hÞ

DxðtÞe�1=�hS½xðtÞ� (5)

where £ = h/2p, h is Planck’s constant, and the integral

Z
xð0Þ¼xðb�hÞ

DxðtÞ½ � � � � (6)

denotes integration over all paths beginning at x(0) and

ending at x(b£). In Eq. (5), the imaginary time action

functional for the path x(t) is given as

S½xðtÞ� ¼
Z b�h

0

H½xðtÞ� dt ¼
Z b�h

0

�
m

2
ẋðtÞ2 þ U½xðtÞ�

�
dt

(7)

where U[x(t)] is the potential energy function.
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