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a b s t r a c t

This paper presents data-driven methods for echocardiogram enhancement. Existing denoising algorithms

typically rely on a single noise model, and do not generalize to the composite noise sources typically found

in real-world echocardiograms. Our methods leverage the low-dimensional intrinsic structure of echocar-

diogram videos. We assume that echocardiogram images are noisy samples from an underlying manifold

parametrized by cardiac motion and denoise images via back-projection onto a learned (non-linear) mani-

fold. Our methods incorporate synchronized side information (e.g., electrocardiography), which is often col-

lected alongside the visual data. We evaluate the proposed methods on a synthetic data set and real-world

echocardiograms. Quantitative results show improved performance of our methods over recent image de-

speckling methods and video denoising methods, and a visual analysis of real-world data shows noticeable

image enhancement, even in the challenging case of noise due to dropout artifacts.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Whether for visual enhancement or as pre-processing for down-

stream algorithms, such as anomaly detection (Qian et al., 2011),

object segmentation (Santiago et al., 2013), motion analysis (Huang

et al., 2014; Papademetris et al., 2002; Yu et al., 2014), or atlas con-

struction (Duchateau et al., 2011), denoising facilitates visual data in-

terpretation by removing noise, de-emphasizing distractors, and in-

creasing the definition of relevant organ structures. Compared with

other cardiac imaging techniques such as magnetic resonance imag-

ing (Huang et al., 2011), denoising is especially important for ea-

chocardiograms since the images often suffer from ultrasound imag-

ing noise. Fig. 1 shows sample echocardiograms depicting common

cases of ultrasound imaging noise. The images in the first column are

relatively clear examples with well-defined cardiac structures. The

frames in the second column depict an elevated amount of speckle

noise.1 This can be observed as the granular pattern resulting from

the scattering of ultrasound signals, which can introduce discontinu-

ities at the boundaries of larger tissue and, often, a lack or loss of clar-

ity of smaller structures (e.g., heart valves). The third column shows

images containing dropout artifacts, which are typically caused by

a loss of tight contact between the transducer and the patient,
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1 For image enhancement, speckles are considered as unwanted visual artifacts.

However, it is worth noting that speckle patterns can be useful features for automated

tracking algorithms (e.g., Yue et al., 2009).

insufficient conductive gel, or extra fluid or fat tissue between the

transducer and the heart. Dropout artifacts can result in the loss of

visibility in part of the structures of interest, and often affect consecu-

tive frames in a video. These example frames demonstrate a common

issue: often, real-world biomedical data contains multiple sources of

noise.

Many existing video denoising algorithms extend single-image

algorithms, with some modification to incorporate temporal regu-

larization. In the single-image case, most methods assume a prior

underlying model on the noise distribution, such as zero-mean

Gaussian noise or a Poisson distribution (Zhang et al., 2008). For

single images, even in the biomedical domain, these assumptions are

often reasonable and provide adequate denoising. However, as in the

echocardiography example shown in Fig. 1, a single statistical model

may be insufficient to represent the complexity of multiple, different

noise sources.

In this paper, we do not make strong assumptions regarding the

noise model, but rather make use of the fact that the number of un-

derlying causes of image change in biomedical video is often quite

low. That is, the number of degrees of freedom in such sets is small

and often enumerable. For example, cardiac ultrasound frames may

vary due to cardiac phase, patient breathing, transducer motion, and

imaging noise. In the case of denoising, or other biomedical video

analysis tasks, this structure can often provide a more perceptually

meaningful basis for regularization than the temporal order of frames

in a sequence. However, factoring the causes of image change di-

rectly from visual data and recovering this underlying structure is a

non-trivial problem due to the high dimensionality of data and low
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Fig. 1. Biomedical video often suffers from multiple sources of noise. These images show echocardiogram frames that suffer from speckle noise (middle) and dropout artifacts

(right) highlighted by arrows.

signal-to-noise-ratio (SNR). To address this problem, we take advan-

tage of the fact that in clinical biomedical settings, there is often avail-

able, associated metadata collected during image acquisition that can

serve as a proxy for the dominant cause of image change. For ex-

ample, in echocardiography, electrocardiograms (ECG), which record

cardiac electrical activity and, therefore, heart phase information, are

usually acquired along with synchronized echocardiograms.

This paper, which extends our previous work (Wu et al., 2013)

with a new kernelized model, incorporates motion-relevant context

for data-driven video denoising rather than learning this structure di-

rectly from noisy image data. Since our approach relies on the under-

lying relationships between images for denoising, it naturally applies

to cases when multiple sources of noise are present.

2. Related work

The literature on video denoising, both within and without the

biomedical domain, is vast. Many of the approaches tailored to video

are extensions of single-image denoising methods that incorporate

some form of temporal regularization. In general, these methods con-

sider noisy images as ideal noise-free images corrupted by random

noise drawn from a specified probability distribution and introduce

additional constraints to solve the under-constrained task of separat-

ing the noise-free image from the noisy input.

Image-based video denoising. One common model is to assume in-

dependent and identically distributed, zero-mean Gaussian additive

noise, where images are denoised by finding the mean of neigh-

boring pixels, and the neighborhood can be defined spatially and/or

temporally based on some notion of similarity (Buades et al., 2005;

2008; Ghoniem et al., 2008; Ren et al., 2012; Xu et al., 2010). For

ultrasound image analysis, more complex noise models have been

considered, including multiplicative, locally-correlated speckle noise.

This model has been incorporated into algorithms that employ non-

local means (Coupe et al., 2009) and wavelet shrinkage (Gupta et al.,

2007; Khare et al., 2010). One of the most widely-applied approaches,

speckle reducing anisotropic diffusion (SRAD) (Yu and Acton, 2002),

considers speckle removal as an iterative edge-preserving diffusing

process. There have been a number of extensions for ultrasound en-

hancement (Aja-Fernández and Alberola-López, 2006; Aksel et al.,

2006; Krissian et al., 2005; 2007; Yu et al., 2010), which follow the

general SRAD framework. These image denoising methods all share

the same inherent assumption of a single noise model, whereas in

this paper, we consider cases of biomedical image analysis, which

exhibit noise models with composite causes, including factors that

are difficult to model parametrically.

Manifold denoising. Compared to video denoising methods extended

from single-image algorithms, there has been some work that consid-

ers the entire video as a whole by considering image-level relation-

ships. Manifold denoising approaches take advantage of the property

that related images, when considered as points in a high-dimensional

space, lie on or near a low-dimensional manifold. Manifold-based

methods denoise images by combining information from nearby im-

ages on the manifold, rather than temporal neighbors. One method

for manifold denoising learns a global manifold representation of

the image set using density estimation, and images are denoised by

minimizing the sum of deviation from the learned manifold (Sun

et al., 2012). Similarly, there have been denoising approaches based

on other unsupervised nonlinear dimensionality reduction tech-

niques, such as Kernel Principal Component Analysis (Kwok and

Tsang, 2003), autoencoders (Vincent et al., 2010), and Gaussian Pro-

cess Latent Variable Model (Gao et al., 2008). These methods use

the learned low-dimensional representation of images to denoise via

back-projection into image space. There are other methods that do

not rely on constructing a global manifold structure, but rather ex-

ploit the locally smooth and linear properties of a manifold. Local

Principal Component Analysis (PCA) has been used to estimate local

manifold directions, and images are denoised by varying the image

along the vector in image space in the direction orthogonal to the

tangent space (Wang and Carreira-Perpiñán, 2010; Wang et al., 2011),

or by minimizing the overall reconstruction error (Gong et al., 2010).

The nearest-neighbor graph, used in graph embedding approaches,

has been used to approximate the manifold topology and denoise im-

ages by graph diffusion, which iteratively reduces the differences be-

tween neighboring images (Hein, 2007; Hein and Maier, 2006). An

important assumption underlying these manifold denoising meth-

ods is that the manifold structure can be well-approximated solely

from the input images. However, robustly learning a low-dimensional

manifold is a non-trivial problem in presence of composite causes of

imaging noise, where the (multimodal) noise variance may dominate

data variance.

Denoising with side information. One approach to side-stepping the

problem of learning a low-dimensional representation for image data

is to incorporate side information. In contrast to the large amount

of work done in unsupervised image and video denoising, there is

much less that incorporates side information, or metadata. In some

methods side information has been used during training to learn a
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