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a b s t r a c t

We present a method to compute the conditional distribution of a statistical shape model given partial
data. The result is a ‘‘posterior shape model’’, which is again a statistical shape model of the same form
as the original model. This allows its direct use in the variety of algorithms that include prior knowledge
about the variability of a class of shapes with a statistical shape model. Posterior shape models then pro-
vide a statistically sound yet easy method to integrate partial data into these algorithms. Usually, shape
models represent a complete organ, for instance in our experiments the femur bone, modeled by a mul-
tivariate normal distribution. But because in many application certain parts of the shape are known a pri-
ori, it is of great interest to model the posterior distribution of the whole shape given the known parts.
These could be isolated landmark points or larger portions of the shape, like the healthy part of a path-
ological or damaged organ. However, because for most shape models the dimensionality of the data is
much higher than the number of examples, the normal distribution is singular, and the conditional dis-
tribution not readily available. In this paper, we present two main contributions: First, we show how the
posterior model can be efficiently computed as a statistical shape model in standard form and used in any
shape model algorithm. We complement this paper with a freely available implementation of our algo-
rithms. Second, we show that most common approaches put forth in the literature to overcome this are
equivalent to probabilistic principal component analysis (PPCA), and Gaussian Process regression. To
illustrate the use of posterior shape models, we apply them on two problems from medical image anal-
ysis: model-based image segmentation incorporating prior knowledge from landmarks, and the predic-
tion of anatomically correct knee shapes for trochlear dysplasia patients, which constitutes a novel
medical application. Our experiments confirm that the use of conditional shape models for image seg-
mentation improves the overall segmentation accuracy and robustness.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Statistical shape models have become an indispensable tool in
medical image analysis. In essence, statistical shape models can be
seen as a probability distribution (usually a normal distribution),
which assigns the anatomically normal shapes of an anatomical
structure a high probability, while pathological and other shapes
that do not correspond to the modeled anatomical structure are
assigned a low probability. Their power and versatility can be ex-
plained by the fact that they provide a quantitative answer to two
fundamental questions in medicine: (1) How does a normal in-
stance of a given anatomical structure look like? (2) Is a specific ana-
tomical structure normal or pathological? Statistical shape models
thus allow us to develop algorithms whose solution space is re-
stricted to anatomically normal shapes. Such a strong prior on
the solution makes the algorithm more robust, leads to easier opti-
mization problems, and even allows us to infer a solution when
only partial data is given. Consequently, applications such as

implant design, surgery planning, or even medical image segmen-
tation, for which it is clear that the result has to be a normal shape,
have been shown to greatly benefit from the use of shape models
(Heimann and Meinzer, 2009). In this paper we show how we can
build a statistical shape model that even better restricts the solu-
tion space for the case when a part of the solution shape is already
known. The new model answers the question: Given a part of an
anatomical structure, how does a normal instance of the full shape
look like? Knowledge of a part of the structure is often immedi-
ately available in practice. In surgery planning for example, a part
of a shape may be missing due to a trauma or tumor, but the
remaining part of the shape is known to be intact. It is thus a priori
known that the solution needs to correspond to the shape of the
part that is still intact. Another typical scenario is that a number
of landmark points are available, which need to be matched by
an algorithm.

In the following we sketch the main idea behind our method: A
PCA-based statistical shape models is a generative model of the
form:

s ¼ sðaÞ ¼ lþ Qa; ð1Þ
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where l 2 Rp is a vector that represents the mean shape and
Q ¼ ðq1; . . . ;qnÞ 2 Rp�n is a matrix of principal components qi, de-
rived from training examples. By assuming that the coefficients
a 2 Rn in (1) follow a standard normal distribution pðaÞ � N ð0; InÞ,
a probability distribution pðsÞ � N ðl;QQ TÞ is induced on the shape
space. For a known, given part of a shape sg 2 Rq, we wish to com-
pute a new (normal) distribution pðajsgÞ � N ðg;KÞ. Using this dis-
tribution as a model for the coefficients a in (1) yields a new
shape model, which represents shapes whose fixed part corre-
sponds to sg. The new model, whose mathematical form is identical
to that of the original model, can thus be used to strengthen the
prior assumptions for any method that uses shape models.

In most shape models, the number of examples n is less than the
dimensionality of the shape space p. This makes the covariance
matrix QQT and therefore the normal distribution N ðl;QQ TÞ sin-
gular and the conditional distribution is more difficult to compute
than it seems at first glance. We follow the most common ap-
proach from prior work, which is to regularize the covariance ma-
trix, or the part of it corresponding to the given data, by adding a
small multiple of the identity matrix r2 I. This can be interpreted
as modeling the noise or deviation from the model in the partial
data. We show the connection of this approach to probabilistic
principal component analysis (PPCA) and Gaussian process
regression.

We demonstrate two prototypical application of this model in
medical applications. The first application targets an atlas-based
segmentation of the femur bone from CT images using statistical
model fitting. Here, a sparse set of landmark points is used to con-
strain the shape space, and thus simplify the actual fitting task. The
second application targets operation planning for trochlear dyspla-
sia patients. Trochlear dysplasia is a deformity of the knee that is
treated surgically by remodeling the joint surface. Our application
demonstrates how the shape model can be used to infer the normal
shape of the pathological region from the intact part. This consti-
tutes a novel application of (posterior) shape models for surgery
planning.

In summary, we have the following main contributions: (1) We
show how to efficiently compute the conditional distribution
p(ajsg) and the resulting posterior shape model, which is again a
statistical shape model of the form (1). (2) We show the connection
of this method to Probabilistic PCA (Tipping and Bishop, 1999) and
Gaussian Process regression Rasmussen and Williams (2006). (3)
We provide novel applications of our method to two problems in
medical image analysis. (4) We provide a C++ implementation, as
an integrated part of the freely available statismo library (Lüthi
et al., 2012).1

1.1. Related work

Since their invention, statistical shape models have been used
to infer the full shape from partial or ‘‘sparse’’ data. Often, only
the maximum a posterior solution (MAP), i.e. the single most prob-
able shape given the partial data is sought. Of the many papers
computing the MAP, we only mention Blanz and Vetter (2002),
as it is closest to this work. It uses a regularization term of the form
r2I to compute a conditional distribution, but only computes the
MAP and not the full posterior.

We are interested in computing this posterior model. In previ-
ous work (Albrecht et al., 2008), we derived a statistical model
matching the given data using a heuristic method. In Lüthi et al.
(2009), a similar model was more rigorously derived as the condi-
tional probability of a PPCA formulation (Tipping and Bishop, 1999)

of the statistical model given the partial data. The derivation of the
conditional models we present here is similar, but it simplifies the
formulation by separating the modeling of the partial data and the
concept of PPCA models.

Other research groups have also investigated partially deter-
mined shape models. In Liu et al. (2004), canonical correlation
analysis (CCA) is used to predict an unknown or diseased part of
a shape from the healthy part. In Blanc et al. (2009) the given data
is not a part of the shape, but given in the form of ‘‘surrogate vari-
ables’’ such as weight, sex, or age of a patient. In Blanc et al. (2012),
this model is extended to also include partial shape data. In Blanc
and Szekely (2012), the confidence of the reconstruction is evalu-
ated, with a focus on including also the uncertainty involved in
estimating correspondence between the given data and the model.
These last two papers mention conditional shape models in the
form we consider here in passing, but do not discuss the technical
details or compute the actual shape model of the posterior
distribution.

De Bruijne et al. (2007) compute a conditional shape model of a
human vertebra given its neighboring vertebrae. They compute the
conditional distribution with a regularization term of the form r2I
and use the posterior shape model to classify fractures of the ver-
tebrae. This posterior model seems very similar to our approach,
but no details of its computation, especially for datasets larger than
2D vertebra shapes are given. In Baka et al. (2010) and Tomoshige
et al. (2012) the simple regularization term r2 I is replaced with a
more general matrix reflecting the uncertainty for each given value
individually. No explicit form of the posterior shape model is given
in these papers. Their idea of replacing the regularization term can
be employed in our approach, if individual uncertainty estimates
for the given values are available. For our experiments, however,
we use the standard regularization term.

Metz et al. (2010) use a combined model of shape and motion to
infer cardiac motion from given shapes. They do not use a regulari-
zation term but compute the conditional distribution ‘‘after apply-
ing PCA’’, which amounts to simply projecting the given data onto
the span of the example data and ignoring how far it actually is from
this span. No posterior model is computed. Petersen et al. (2011) aim
at computing the conditional distribution of a combined model of
shape and rigid alignment, given partial data like landmark points.
By including the rigid alignment, their conditional model becomes
a non-linear manifold. This is then again linearized using a Laplace
approximation (see Bishop (2006) for instance), in order to draw
samples from the distribution. While this method has the advantage
of incorporating the alignment into the model, no analytic expres-
sion of the model and no explicit posterior shape models are given.

To sum up, while all of these papers introduce some form ‘‘con-
ditional model’’, the detailed derivation, explicit and efficient com-
putation of the posterior shape model in the form of a standard
shape model, are novel.

The viewpoint of interpreting a shape model as a Gaussian pro-
cesses has been put forward by Joshi et al. (1997). A very compre-
hensive overview of their group’s approach to shape modeling can
be found in Grenander and Miller (1998). The use of Gaussian Pro-
cess Regression for incorporating additional prior information, or
the computation of conditional shape modes has to the best of
our knowledge not been discussed, neither the connection to PPCA.

Regarding the applications we present in this paper, the surgical
treatment of trochlear dysplasia is presented in Verdonk et al.
(2005). In Pfirrmann et al. (2000) a statistical study of trochlear
dysplasia is performed based on manual measurements of a few
selected geometric criteria. The use of statistical shape model in
this area is novel.

Statistical shape models have been used in the context of image
segmentation since their invention, see Heimann and Meinzer
(2009) for a recent and extensive review. In the terminology of1 available at: http://www.statismo.org.
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