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a b s t r a c t

Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the func-
tional activities of the human brain during task-free and task-performance periods, respectively. How-
ever, due to the difficulty in strictly controlling the participating subject’s mental status and their
cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an
R-fMRI/T-fMRI scan truly reflects the participant’s functional brain states during task-free/task-perfor-
mance periods. This paper presents a novel computational approach to characterizing and differentiating
the brain’s functional status into task-free or task-performance states, by which the functional brain
activities can be effectively understood and differentiated. Briefly, the brain’s functional state is repre-
sented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on
358 consistent cortical landmarks across individuals, and then an effective sparse representation method
was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance
states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are sub-
stantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped,
suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance
brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional acti-
vation detections in different groups, and our results revealed unexpected task-performances of some
subjects. This work offers novel insights into the functional architectures of the brain.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Functional magnetic resonance imaging (fMRI) techniques have
been widely used to study the functional activities and cognitive
behaviors of the brain in recent years. Generally, fMRI studies
can be differentiated into various categories based on the stimulus
used, e.g., resting state fMRI (R-fMRI) (task-free) (Raichle et al.,
2001; Fox and Raichle, 2007) and task-based fMRI (T-fMRI) (task-
performance) (Linden et al., 1999; Heeger and Ress, 2002; Calhoun
et al., 2001; Koshino et al., 2005; Gailard et al., 2004). For these
fMRI studies, the quality of fMRI data is vital because it strongly
influences the reliability of conclusions inferred from the fMRI data
(Simmons et al., 1999; Stocker et al., 2005). During fMRI scans,
there are several factors which may affect the fMRI data qualities
(Stocker et al., 2005), such as fMRI hardware related factors, exper-
imental designs, and participating subject’s issues (e.g., motion,

lack of attention or any other unexpected cognitive behaviors
which are not related to the experimental designs). A variety of
fMRI data quality control studies have focused on fMRI imaging
quality, which already made significant contributions to the qual-
ity assurance of fMRI data (Simmons et al., 1999; Foland and Glo-
ver, 2004; Stocker et al., 2005; Friedman and Glover, 2006).
Furthermore, there were many studies that aimed to optimize
and improve experimental designs, especially in event-related task
fMRI studies (Anders 1999; Wager and Nichols, 2003; Savoy, 2005;
Amaro and Barker, 2006). These task-based experimental designs
were expected to provide a statistically meaningful contrast be-
tween the neuronal activity at task-performance and the back-
ground condition. In addition, the reliability and variability of the
results based on fMRI data were investigated and analyzed in a
variety of papers (McGonigle et al., 2000; Specht et al., 2003;
Schuyler et al., 2010).

An important but underexplored issue in T-fMRI/T-fMRI is how
to ascertain the performance of the participating subject’s func-
tional brain behaviors during fMRI scans. It is an ideal case that
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researchers design experimental fMRI paradigms appropriately
such that participating subjects collaboratively pay close attention
and strictly responds to stimulus events. However, it is difficult to
strictly control every subject’s mental status and cognitive behav-
iors all the time during fMRI scan sessions. As a consequence, the
analysis results derived from fMRI data based on the assumption
that every participating subject was strictly complying with the
experimental design could be doubtful to some extent, due to
the critical lack of effective approaches that can accurately assess
the performance of the participant during fMRI scans. For instance,
if a participating subject’s brain was actively thinking during R-
fMRI scans, how different this R-fMRI data will be from other strict
resting state fMRI data acquired during task-free states? Similarly,
if a participating subject’s brain was in resting state, that is, not fol-
lowing the administered task-performance paradigm, how differ-
ent this T-fMRI data will be from other strict task-based fMRI
data acquired during task-performance states? If these differences
are substantial, can we quantitatively characterize and automati-
cally differentiate those unreliable R-fMRI/T-fMRI data from strict
R-fMRI/T-fMRI data? The answers and possible solutions to these
questions can significantly enhance our understanding of the func-
tion mechanisms of the brain and help us better monitor and con-
trol the quality of R-fMRI/T-fMRI data in the subsequent
quantitative analysis, e.g., inference of resting state networks
(RSNs), functional connectivity analysis, and task-based functional
region localization.

In response to the above unanswered questions, this paper pre-
sents a novel computational framework to characterize the brain’s
task-free and task-performance functional states by learning from
both R-fMRI and T-fMRI datasets. Our computational pipeline is
composed of three major components. First, the structural connec-
tome of each subject is constructed via our recently developed and
validated 358 Dense Individualized and Common connectivity-
based Cortical Landmarks (DICCCOL) (Zhu et al., 2013) based on
DTI data. Second, a sliding window approach was employed to con-
struct each subject’s temporally varying functional connectomes
based on the structural connectome and coincident fMRI data,
which was further interactively divided into quasi-stable seg-
ments. Third, we represent the brain’s functional status by a set
of whole-brain quasi-stable connectome patterns (WQCPs), and
then apply the Fisher discriminative dictionary learning (FDDL)
sparse coding approach (Yang et al., 2011) to learn the atomic con-
nectome patterns (ACPs) of both task-free and task-performance
states from large-scale temporally segmented WQCPs. Essentially,
the integration and pooling of many WQCPs from different brains
are enabled by the DICCCOL system (Zhu et al., 2013), which pro-
vide intrinsic structural and functional correspondences across dif-
ferent individuals and populations. Consequently, the WQCPs from
the different temporal segments of multiple brains can be readily
pooled and effectively compared via sparse coding and representa-
tion methods, which will learn the most descriptive atomic pat-
terns in forming a combined meaningful dictionary to represent
and discriminate those WQCPs. Therefore, the major methodolog-
ical novelties of this paper lie in the DICCCOL-based structural/
functional connectome construction and the sparse coding and
representation of functional brain states.

The computational pipeline has been applied on two separate
multimodal DTI/R-fMRI/T-fMRI datasets of 26 healthy adolescents
and 37 healthy adults. Our experimental results demonstrated
that the learned ACPs for R-fMRI and T-fMRI datasets are substan-
tially different, as expected, and that the ACPs learned from inde-
pendent R-fMRI datasets of healthy adolescents and adults are
quite reproducible. Importantly, a certain portion of ACPs were
overlapped between the two datasets, suggesting that some par-
ticipating subjects were not in the expected task-free/task-perfor-
mance states during the R-fMRI/T-fMRI scans and should be

considered as potential outliers in the following steps of data
analysis. As examples, some potential outlier WQCP segments
from the T-fMRI dataset within resting state ACP patterns were
further examined. Our activation detection results on T-fMRI
datasets demonstrated that the subjects with outlier resting state
ACPs have almost no group activation regions, while the subjects
without outlier resting state ACPs exhibit consistent task-related
activations. This result suggests that the ACP patterns could be
potentially used to infer whether the participating subjects were
following the administered experimental tasks or not during T-
fMRI scans. In general, our experimental results revealed interest-
ing phenomena of the regularity, diversity and dynamics of func-
tional connectomes in task-free and task-performance states.
Notably, an early short version of this methodology was presented
in the MICCAI 2012 conference (Zhang et al., 2012).

2. Materials and methods

2.1. Overview

The flowchart of the proposed computational framework is
summarized in Fig. 1. First, the 358 consistent DICCCOL land-
marks that have been discovered and validated in our recent
study (Zhu et al., 2013) are located in the DTI data of each brain
(green bubbles1 in the left panel of Fig. 1) via an effective func-
tional landmark prediction approach (Zhang et al., 2012; Zhu
et al.,2013). After pre-processing (Zhu et al., 2011b, 2013), both
R-fMRI and T-fMRI images are co-registered into the DTI space
using FSL FLIRT, and the representative R-fMRI/T-fMRI time series
in each DICCCOL were extracted (Fig. 1(1)). Second, by using a slid-
ing time window approach (Li et al., 2013), the dynamic functional
connectivity time series between each pair of DICCCOLs are mea-
sured and thus the time-varying functional connectomes are con-
structed (Zhu et al., 2013). Furthermore, the cumulative
functional connectivity strength of each landmark with all other
DICCCOLs at each time point is summed, and the functional con-
nectome is thus compactly represented by a column as shown in
Fig. 1(2). Third, as extensive observations show that the functional
connectome strengths are relatively stable in a continuous time
period, therefore, they are interactively segmented into quasi-sta-
ble segments (called WQCP above), which form a set of WQCP
training samples (Fig. 1(3)). Fourth, the WQCP samples from both
R-fMRI and T-fMRI datasets were pooled together for sparse repre-
sentation and classification via the Fisher discriminative dictionary
learning (FDDL) method (Fig. 1(4)) (Yang et al., 2011) and a set of
representative ACPs were obtained. Finally, each WQCP segment is
classified to one ACP and the distributions of ACPs can be exam-
ined at the individual and population levels, as illustrated in
Fig. 1(5).

2.2. Data acquisition and pre-processing

Two populations including 26 healthy adolescents (ages 11–17)
and 37 healthy adults (ages 23–46) were recruited in Sichuan, Chi-
na, under the IRB approvals of the Second Xiangya Hospital and the
Central South of University. Multimodal DTI/R-fMRI/T-fMRI data-
sets for each participant were acquired on a 3T MRI scanner in
West China Hospital, Huaxi MR Research Center, Department of
Radiology, Chengdu, China. Acquisition parameters were as
follows: DTI: 256 � 256 matrix, 3 mm slice thickness, 240 mm
FOV, 50 slices, 15 DWI volumes, b-value = 1000; fMRI: 64 � 64
matrix, 4 mm slice thickness, 220 mm FOV, 30 slices, TR = 2 s. The

1 For interpretation of color in Figs. 1, 5 and 6, the reader is referred to the web
version of this article.
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