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a b s t r a c t

Deformable surface models are often represented as triangular meshes in image segmentation applica-
tions. For a fast and easily regularized deformation onto the target object boundary, the vertices of the
mesh are commonly moved along line segments (typically surface normals). However, in case of high
mesh curvature, these lines may not intersect with the target boundary at all. Consequently, certain
deformations cannot be achieved. We propose omnidirectional displacements for deformable surfaces
(ODDS) to overcome this limitation. ODDS allow each vertex to move not only along a line segment
but within the volumetric inside of a surrounding sphere, and achieve globally optimal deformations sub-
ject to local regularization constraints. However, allowing a ball-shaped instead of a linear range of
motion per vertex significantly increases runtime and memory. To alleviate this drawback, we propose
a hybrid approach, fastODDS, with improved runtime and reduced memory requirements. Furthermore,
fastODDS can also cope with simultaneous segmentation of multiple objects. We show the theoretical
benefits of ODDS with experiments on synthetic data, and evaluate ODDS and fastODDS quantitatively
on clinical image data of the mandible and the hip bones. There, we assess both the global segmentation
accuracy as well as local accuracy in high curvature regions, such as the tip-shaped mandibular coronoid
processes and the ridge-shaped acetabular rims of the hip bones.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we address the issue of segmenting highly curved
anatomical structures in three-dimensional medical image data.
The aim is to improve segmentation accuracy. Segmentation meth-
ods based on deformable models (Terzopoulos, 1988; Xu et al.,
2000; He et al., 2008) have been shown to cope in a highly robust
manner with typical imaging deficiencies, such as noise, artifacts,
partial volume effects, low or no contrast due to adjacent anatom-
ical structures with similar appearance, etc. The basic idea is to de-
form a given (template) shape in such a way that the deformed
shape provides an optimal geometric representation of the corre-
sponding structure in the image.

Among many different types of deformable models, meshes are
advantageous in many respects, such as flexibility and topology
preservation (Montagnat et al., 2001). Typically, the degrees of
freedom of the deformable mesh are increased in a multi-level
fashion (Okada et al., 2007; Ma et al., 2010; Yin et al., 2010; Zhang
et al., 2010; Seim et al., 2008; Kainmueller et al., 2007). At first,
only global deformations like rigid transformations or statistical
variations (Cootes et al., 1995; Heimann and Meinzer, 2009) are al-

lowed. This robustly produces initial deformed shapes that roughly
capture the structure sought-after in the image. On the finer levels,
more local assumptions are made on deformations (Okada et al.,
2007; Ma et al., 2010), in order to allow for more flexibility and
thus capture the specific details of the structure in the given image
data. On the finest level, each vertex position of the mesh can move
‘‘freely’’, subject only to regularity constraints that consider its di-
rect neighborhood (Yin et al., 2010; Zhang et al., 2010; Seim et al.,
2008; Kainmueller et al., 2007). We refer to such kind of deforma-
tions as free deformations.

Usually, the deformable mesh probes the image information at
each vertex position: The image data is evaluated within a certain
search space to assess suitable image features. Given these probes, a
new shape is computed by displacing the vertices of the mesh, fol-
lowing a trade-off between image fidelity and anatomically plausi-
ble deformation. Note that for free deformations, search space and
resulting displacement of an individual vertex are closely related,
while this is in general not the case for global deformations, where
individual resulting vertex displacements may deviate arbitrarily
from the respective search space.

The details of the image probing play a crucial role in the seg-
mentation process. To this end, unidirectional (i.e. linear, one-
dimensional) search spaces per vertex of the deformable mesh
are commonly used (Heimann and Delingette, 2011) due to a
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number of benefits: (1) Feature assessment is fast within one-
dimensional subsets of the image; (2) It is easy to select the ‘‘best’’
feature, as required by many methods (Cootes et al., 1995;
Kainmueller et al., 2007), because a one-dimensional search space
is likely to hit the target surface at only one single point (or at most
a finite number of points), and hence the set of suitable features is
likely to be small; (3) Free deformations can be computed in a
globally optimal way for unidirectional search spaces (Li et al.,
2006); (4) Normal vertex displacements implicitly restrict the
deformation of the surface in a way that reduces (but does not
prevent) the risk of generating mesh inconsistencies like self-
intersections or fold-overs.

However, unidirectional search spaces suffer from restricted vis-
ibility: They are prone to miss features in the image data (Fig. 1). In
case global deformations are employed, this problem may be alle-
viated by the fact that individual vertex displacements are not
tightly coupled to their respective search spaces. On free deforma-
tions, however, the problem has a severe impact: E.g., local trans-
lations of highly curved surface regions such as tips or ridges can
hardly be achieved (cf. Figs. 1 and 4). This holds true independently
of the chosen mesh resolution.

One approach to confront the visibility problem is repeated –
i.e. iterative – search for image features and respective deforma-
tion, where the hope is that visibility will improve in the next
iteration. There is, however, no guarantee to this end. Furthermore,
iterative deformation of meshes may easily lead to mesh inconsis-
tencies such as self-intersections (Park et al., 2001). This requires
additional remedial actions such as adaptive step-size control,
adaptive remeshing or mesh surgery (Bucki et al., 2010).

In this paper, we propose a method to overcome the visibility
problem for free deformations.1 The basic idea is to enlarge the
search space for image features to allow not only unidirectional
but omnidirectional displacements at each point of the deformable
model. On a deformable mesh, we asses features at – and allow dis-
placements to – a discrete set of points within a ball2 around each
vertex, thus guaranteeing visibility within some radius. Free defor-
mations are modeled by penalizing differences of displacements on
edge-connected mesh vertices. This discrete formulation enables
us to frame the segmentation problem as a Markov Random Field
(MRF), as will be explained in Section 2. MRFs can be optimized effi-
ciently (Komodakis et al., 2008), which has made them attractive for
many applications in image processing and computer graphics (see
e.g. Glocker et al., 2008; Paulsen et al., 2010). We denote the method

of ball-shaped search spaces combined with MRF optimization for
surface mesh deformation as omnidirectional displacements for
deformable surfaces, or ODDS.

Allowing a three-dimensional search space per mesh vertex has
the drawback of significantly increased run-time and memory
requirements as compared to unidirectional search spaces. There-
fore, we also propose an extension to ODDS that is faster and less
memory-intensive – denoted as fastODDS. The key idea for fast-
ODDS, presented in detail in Section 3, is to allow omnidirectional
displacements only in regions of high curvature, while restricting
displacements to surface normals in ‘‘flat’’ surface regions.

Section 4 provides an extensive evaluation of ODDS and fast-
ODDS on synthetic and clinical data. In Section 5 we will analyze
and discuss these results in depth. Here, we will also address the
influence of mesh resolution and mesh consistency.

In summary, our results indicate that

1. ODDS can handle free deformations of meshes with high curva-
ture where previous approaches based on normal displace-
ments fail.

2. fastODDS keep all the benefits of ODDS for highly curved sur-
face regions, while being twice as fast and requiring 50% less
memory.

3. In contrast to ODDS, fastODDS can also be applied successfully
for simultaneous segmentation of multiple objects.

2. ODDS

For a more thorough search for image features in terms of the
visibility problem (see Section 1), we propose to extend the search
space at each vertex of a deformable surface mesh from a line seg-
ment to a ball centered at the respective vertex position. We define
the segmentation problem as a trade-off between finding suitable
image features within these ball-shaped search spaces and simul-
taneously considering local regularization.

Volumetric (three-dimensional) ball-shaped search spaces of
neighboring vertices overlap heavily in case the ball radius is big-
ger than the distance between the respective vertices; further-
more, individual search spaces most probably contain a whole
region (two-dimensional manifold) of the target surface. Hence
highly inconsistent (dissimilar) displacements on neighboring ver-
tices may point to the target surface. The type of local regulariza-
tion we employ must be able to avoid highly inconsistent
displacements of adjacent vertices. We achieve this in a discrete
setting (Sections 2.1 and 2.2) via Markov Random Field (MRF) en-
ergy minimization (Section 2.3).

We denote the set of vertices v of the deformable surface mesh
as V ¼ fv i 2 R3ji ¼ 1 � � �nVg, and the set of pairs of adjacent (i.e.
edge-connected) vertices ðv ;wÞ as E � V � V . Each vertex v can
be moved by adding a vector, or displacement, s 2 S, where
S ¼ fsi 2 R3ji ¼ 1 � � �nSg is a discrete set of possible displacements.
We refer to a mapping d : V ! S; v # dðvÞ ¼: dv that assigns a
displacement to each vertex as displacement field. We call a posi-
tion v þ s sample point. The set of sample points v þ S defines the
search space for vertex v. Note that this definition has the effect
that the search space of a vertex equals its range of motion.

2.1. Omnidirectional displacements

We define S as a set of displacements that are uniformly distrib-
uted within a ball of radius rS, i.e. 8s 2 S : ksk < rS, where rS is a
parameter of our method. Displacements in S are arranged as a
cubic close-packed lattice (Conway et al., 1999); see Fig. 2a for a
2D sketch. We denote the minimum Euclidean distance
between unequal displacements si; sj 2 S as sampling distance
dS :¼ minsi–sj

ksi � sjk.

Fig. 1. 2D sketch of an exemplary deformable mesh (dark grey, with vertices as
black dots) and target object (light grey). (a) Normal search spaces (directions
indicated by lines through vertices) on a tip-like structure detect no target
boundary points for a large set of vertices. (b) Resulting unregularized deformation
onto target object boundary. Avoiding self-intersection of the mesh suppresses
displacement of bottom left-most vertex.

1 This work extends the authors’ paper presented at MICCAI 2010 (Kainmueller
et al., 2010), from which some text passages and figures are reused with kind
permission from Springer Science + Business Media.

2 Note that we use the term ball to refer to the volumetric (three-dimensional)
interior of a sphere, while with the term sphere we refer to the surface of a ball, i.e. a
two-dimensional manifold embedded in 3d.
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