
Learning from unbalanced data: A cascade-based approach for detecting
clustered microcalcifications

A. Bria a,⇑, N. Karssemeijer b, F. Tortorella a

a Department of Electrical and Information Engineering, University of Cassino and L.M., Via Di Biasio 43, 03043 Cassino (FR), Italy
b Diagnostic Image Analysis Group, Radboud University Nijmegen Medical Centre, P.O. Box 9102, 6500 HC Nijmegen, The Netherlands

a r t i c l e i n f o

Article history:
Received 26 June 2013
Received in revised form 18 October 2013
Accepted 31 October 2013
Available online 12 November 2013

Keywords:
Computer aided detection
Unbalanced data
Clustered microcalcifications
Mammography

a b s t r a c t

Finding abnormalities in diagnostic images is a difficult task even for expert radiologists because the nor-
mal tissue locations largely outnumber those with suspicious signs which may thus be missed or incor-
rectly interpreted. For the same reason the design of a Computer-Aided Detection (CADe) system is very
complex because the large predominance of normal samples in the training data may hamper the ability
of the classifier to recognize the abnormalities on the images. In this paper we present a novel approach
for computer-aided detection which faces the class imbalance with a cascade of boosting classifiers
where each node is trained by a learning algorithm based on ranking instead of classification error. Such
approach is used to design a system (CasCADe) for the automated detection of clustered microcalcifica-
tions (lCs), which is a severely unbalanced classification problem because of the vast majority of image
locations where no lC is present. The proposed approach was evaluated with a dataset of 1599 full-field
digital mammograms from 560 cases and compared favorably with the Hologic R2CAD ImageChecker,
one of the most widespread commercial CADe systems. In particular, at the same lesion sensitivity of
R2CAD (90%) on biopsy proven malignant cases, CasCADe and R2CAD detected 0.13 and 0.21 false posi-
tives per image (FPpi), respectively (p-value = 0.09), whereas at the same FPpi of R2CAD (0.21), CasCADe
and R2CAD detected 93% and 90% of true lesions respectively (p-value = 0.11) thus showing that CasCADe
can compete with high-end CADe commercial systems.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Clustered microcalcifications (lCs) are one of the most impor-
tant early indicators of breast cancer since they appear in 30–
50% of cases diagnosed by mammographic screenings (Kopans,
2007). However, interpreting screening mammograms is a big
challenge even for an expert radiologist since the low prevalence
makes finding abnormalities difficult. Birdwell (2009) points out
several subjective factors that may lead to a lack of perception or
to mistakes in interpretation. Among the established methods to
improve radiologist performance, it has been reported that having
more than one radiologist or a Computer-Aided Detection (CADe)
system improves the detection of cancer in mammograms
(Karssemeijer et al., 2009; Eadie et al., 2012). To this end, several
commercial CADe systems are nowadays available and their use
is widespread among radiologists. However, even though CADe
systems show a sensitivity similar to radiologists (Cole et al., 2012),
there are still a few hundred false positives for every true positive
in a screening setting, which is about two orders of magnitude

higher than what the radiologists achieve (Karssemeijer et al.,
2009) and this potentially limits the benefit that a CADe system
can provide. For this reason, the design of CADe systems for clus-
tered lCs is still an open research field as shown by the recent lit-
erature (El Naqa et al., 2002; Wei et al., 2005; Tang et al., 2009;
Zhang et al., 2009; Oliver et al., 2010; Jing et al., 2011).

Among the proposed approaches, methods based on supervised
learning techniques have received the largest share of research
since they can yield powerful binary classifiers able to determine
whether a lC is present (positive) or not (negative) at a pixel loca-
tion. However, such methods have to face two major problems.
First, the huge number of pixels to be analyzed (e.g., about 9 mil-
lion in a digital mammogram) coupled with high-complexity clas-
sifiers may cause a computational burden not easy to sustain,
especially when hundreds or thousands of images have to be pro-
cessed. Second, the vast majority of image locations where no lC is
present makes detection a severely unbalanced classification prob-
lem, where the negative class is several orders of magnitude bigger
than the positive class. Generally speaking, binary classifiers
trained on highly unbalanced data sets tend to be overwhelmed
by the majority class, thus misclassifying the samples belonging
to the minority class. This problem is also known as class imbal-
ance and in recent years it has received considerable attention in

1361-8415/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.media.2013.10.014

⇑ Corresponding author. Tel.: +39 3480339824.
E-mail addresses: a.bria@unicas.it (A. Bria), n.karssemeijer@rad.umcn.nl (N.

Karssemeijer), tortorella@unicas.it (F. Tortorella).

Medical Image Analysis 18 (2014) 241–252

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier .com/locate /media

http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2013.10.014&domain=pdf
http://dx.doi.org/10.1016/j.media.2013.10.014
mailto:a.bria@unicas.it
mailto:n.karssemeijer@rad.umcn.nl
mailto:tortorella@unicas.it
http://dx.doi.org/10.1016/j.media.2013.10.014
http://www.sciencedirect.com/science/journal/13618415
http://www.elsevier.com/locate/media


the machine learning community (e.g., Barandela et al., 2003; Guo
et al., 2008) and subsequently in the medical image analysis field
(Li et al., 2010). Several approaches focused on lC detection (e.g.,
Wei et al., 2005; Zhang et al., 2009; Oliver et al., 2010; Marrocco
et al., 2010) address class imbalance by randomly selecting a lim-
ited set of negative samples so as to obtain approximately the same
size for the two classes. Nevertheless, there is no guarantee that
the selected subset is actually representative of all the possible
negative samples. A different solution is proposed in El Naqa et
al. (2002) in which a Support Vector Machine (SVM) is employed
with a Successive Enhancement Learning (SEL) scheme where the
SVM is initially trained with a balanced training set containing a
limited number of negative samples. The training is then restarted
iteratively by incorporating another N misclassified negative sam-
ples from all the available training images. The retraining step is
repeated until no more changes are observed in support vectors.
In this way the total number of training samples is kept small
and balanced at each retraining round, but the final classifier could
be very complex since it could contain a very large number of sup-
port vectors, thus making the detection phase computationally
intense.

In this paper we present CasCADe, a multistage system for the
automatic detection of clustered lCs on full-field digital mammo-
grams (FFDM), specifically designed to handle efficiently and
effectively the computational complexity and the high class
imbalance. Even though aimed at the lC detection problem, the
approach proposed in this work could be more generally applica-
ble in medical image analysis and especially in other unbalanced
problems such as the automated detection of lung nodules in CT
(e.g., vanGinneken10 et al., 2010), chest lymph nodes in CT (e.g.,
Barbu et al., 2012; Feulner et al., 2013), colon polyps in CT colo-
nography (e.g., Van Ravesteijn et al., 2010), and retinal microaneu-
rysms in Digital Color Fundus Photographs (e.g., Niemeijer et al.,
2010). The rationale of our approach is to employ an ensemble
of ranking-based boosting classifiers connected in series with
increasing complexity and specificity like in the cascade face
detector proposed by Viola and Jones (2001). The choice of boost-
ing-based classifiers is particularly fitting for unbalanced prob-
lems as demonstrated by Galar et al. (2011) who empirically
compared the most significant published approaches and showed
that for two-class unbalanced problems the best results were ob-
tained by using random undersampling techniques coupled with
bagging or boosting ensembles. In our approach each classifier
stage is trained with only a part of the negative samples, thus dis-
tributing the complexity of the whole problem among the classi-
fiers and alleviating class imbalance at the same time.
Nevertheless, the residual imbalance present at each node could
produce unsatisfactory results if the learning algorithm used in
the node is based on the optimization of a performance measure
(such as the empirical error) highly affected by the class distribu-
tion skew. This is the case of AdaBoost, the learning algorithm
employed in the approach of Viola and Jones. The same authors
observe in a successive paper (Viola and Jones, 2002) that Ada-
Boost minimizes a quantity related to the classification error
(and not the number of false negatives) and thus propose a vari-
ant aimed at moderating the effects of the class imbalance by
introducing an asymmetric weight updating mechanism of the
samples in the training set.

The novelty of our approach firstly lies in handling the class
imbalance in each node through a boosting algorithm designed
to maximize the Area under the ROC curve (AUC). The reason for
this choice is that AUC is equivalent to the probability of correct
pairwise ranking and thus provides a measure of the predictive
ability of the classifier which is robust and insensitive to the class
skew (Huang and Ling, 2005). To this end we adopted a reformula-
tion of RankBoost for bipartite ranking problems (Freund et al.,

2003), suitably modified to be embedded in a cascade structure.
Another difference from the approach of Viola and Jones (2001)
is that our cascade-based detector is used not only for lC localiza-
tion, but also for accurately estimating the outline of a lC, which
has been proven to play an important role for the automated differ-
entiation between true positive and false positive detected lCs
(Veldkamp and Karssemeijer, 1996). Indeed, after grouping lCs
into clusters, we classify them into ‘‘abnormal’’ (true positive)
and ‘‘normal’’ (false positive) clustered lCs, the latter including
both benign clusters of lCs and erroneously detected clusters.
The low prevalence of cancer within a mammographic screening
cohort makes also this decision an unbalanced problem and thus
we employ again a RankBoost classifier. To this end, we also pro-
pose a novel set of features especially aimed at capturing the topo-
logical relations between lCs.

The detection performance of CasCADe was evaluated on 1599
full-field digital mammograms from 560 cases obtained in routine
screening and compared with the one of the most widespread
commercial CADe systems, the Hologic R2CAD ImageChecker. To
our knowledge, the scientific literature does not exhibit other
CADe systems which have been compared with high-end commer-
cial systems.

2. Method

The CasCADe system consists of a preprocessing stage, an initial
detection stage and a classification stage in which the number of
false positive detected clusters is reduced. A schematic overview
of these stages is given in Fig. 1. Each of these stages is detailed
in the following subsections.

2.1. Preprocessing stage: quantum noise equalization

In FFDM the dominant source of noise is quantum noise that is
caused by fluctuations in photon fluence at the detector. These
fluctuations can be described by a Poisson distribution with stan-
dard deviation

ffiffiffi
k
p

, where k is the average number of detected pho-
tons (Beutel et al., 2000; Schie and Karssemeijer, 2008). Since in an
FFDM system a linear relationship exists between gray level and
exposure, quantum noise standard deviation rq can be estimated
by (e.g., McLoughlin et al., 2004; Schie and Karssemeijer, 2008):

rqðyÞ ¼ c
ffiffiffi
y
p

ð1Þ

where c is a noise level parameter to be estimated and y is the pixel
intensity.

Actually noise properties vary across the image and thus c
should be estimated locally as, for example, proposed in Schie
and Karssemeijer (2008). However, the same study reports that
the improvement in lC detection performance obtained with a
nonuniform noise model is quite limited and thus we adopted an
uniform noise model in which c is constant across the image. On
this basis, in order to rescale pixel intensities to a scale with uni-
form noise level, we consider a scale transform y0 ¼ TðyÞ that satis-
fies the following differential equation:

dTðyÞ ¼ a
rqðyÞ

dy ð2Þ

where a is the noise level on the transformed scale and the factor
rqðyÞ�1 eliminates the dependency of the differential dy on the
noise variation. Coupling Eq. (2) with Eq. (1) and with border con-
ditions, we obtain the following Cauchy problem:

dTðyÞ
dy

¼ a
c
ffiffiffi
y
p

Tð0Þ ¼ 0
TðymaxÞ ¼ Tmax

8>>><
>>>:

ð3Þ
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