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a b s t r a c t

Mutual information (MI) has been widely used as a similarity measure for rigid registration of multi-
modal and uni-modal medical images. However, robust application of MI to deformable registration is
challenging mainly because rich structural information, which are critical cues for successful deformable
registration, are not incorporated into MI. We propose a self-similarity weighted graph-based implemen-
tation of a-mutual information (a-MI) for nonrigid image registration. We use a self-similarity measure
that uses local structural information and is invariant to rotation and to local affine intensity distortions,
and therefore the new Self Similarity a-MI (SeSaMI) metric inherits these properties and is robust against
signal nonstationarity and intensity distortions. We have used SeSaMI as the similarity measure in a reg-
ularized cost function with B-spline deformation field to achieve nonrigid registration. Since the gradient
of SeSaMI can be derived analytically, the cost function can be efficiently optimized using stochastic gra-
dient descent methods. We show that SeSaMI produces a robust and smooth cost function and outper-
forms the state of the art statistical based similarity metrics in simulation and using data from image-
guided neurosurgery.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Image registration involves finding the transformation that
aligns one image to the second, and has numerous medical appli-
cations in diagnosis and in image guided surgery/therapy. The joint
intensity histogram of two images, be they from different or the
same modalities, is spread (i.e. the joint entropy is high) when they
are not aligned, and is compact (i.e. the joint entropy is low) when
the two images are aligned. Therefore, mutual information (MI)
(Wells et al. (1996); Maes et al. (1997); Pluim et al. (2003)) and
the overlap invariant normalized MI (NMI) (Studholme et al.
(1999)) have been proposed and widely used for rigid registration
of multi-modal images.

MI is not robust against spatially varying bias fields since they
result in different intensity relations between the two images at
different locations. Therefore, Studholme et al. (2006) and Loeckx
et al. (2010) proposed respectively regional MI (RMI) and condi-
tional MI (CMI) where spatial information is used as an extra chan-
nel for conditioning MI. This essentially leads to summing MI
calculated for regions of the images, instead of globally estimating
MI. Klein et al. (2008) proposed localized MI (LMI) where samples
are randomly selected from regions in every iteration and conver-
gence is achieved by using stochastic optimization Klein et al.

(2007, 2009). Zhuang et al. (2011) proposed spatially encoded
MI, which instead of giving equal weights to all pixels in a region,
hierarchically weights pixel contributions based on their spatial
location. These methods have shown to significantly improve the
registration results in the presence of bias fields. Recently, Darkner
and Sporring (2013) provided a unifying framework for NMI and
other common similarity measures and shed more intuition to-
wards local histograms.

A second difficulty rises because MI does not directly take into
account local structures. Therefore, nonrigid registration, which
has considerably more degrees of freedom, can distort local struc-
tures. Utilizing image gradients and their orientations was pro-
posed by Pluim et al. (2000). Recently, De Nigris et al. (2012)
proposed a gradient orientation metric that adaptively controls
the trade-off between smooth or accurate cost functions. The
HAMMER framework of Shen and Davatzikos (2002) sets local geo-
metric moment invariants as attribute vectors of each voxel in the
image. These attribute vectors are then used to form a cost func-
tion, which is hierarchically optimized to give the transformation
parameters. Xue et al. (2004) later used wavelet-based attributes
as local morphological signatures for each voxel. Recently, Ou
et al. (2011) introduced Gabor attributes which can be used for dif-
ferent imaging modalities and tissue organs, and further utilizes
mutual saliency to weight different voxels based on their local
appearance. Taking a different approach, Wachinger and Navab
(2012) generated entropy images independently from each image
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by calculating entropy in small patches around every pixel. They
show that since different imaging modalities show the same tissue
structure, their entropy images are similar and therefore they can
be registered using monomodal registration. In addition to the en-
tropy image representation, they show that structural information
of patches can be encoded into a scalar value using manifold learn-
ing techniques. Performing the same technique on both images,
they again arrive at two representations (one for each image)
which can be registered using monomodal techniques.

A third problem with MI lies in the fact that the infinite dimen-
sional joint and marginal probability distributions1 are required to
calculate the scalar parameter MI. Most MI estimation methods
(Wells et al. (1996); Maes et al. (1997); Pluim et al. (2003)) substi-
tute nonparametric density estimators, such as Parzen windows,
into the MI formulation, and are called ‘‘plug-in’’ estimation in Beir-
lant et al. (1997). An inherit problem of these methods is due to the
infinite dimension of the unconstrained densities. Strict smoothness
constraints or lower dimensional parametrization must be enforced
to estimate these densities, which can cause significant bias in the
estimate (Hero et al., 2002). Graph-based entropy estimators (Hero
et al., 2002; Neemuchwala and Hero, 2005) have been proposed to
directly calculate entropy without the need for performing density
estimation. Therefore, these methods have faster asymptotic conver-
gence rate especially for nonsmooth densities and high dimensional
feature spaces (Hero et al., 2002). Two drawbacks of these methods
are their computational complexity and the discontinuity of their
gradient as the graph topology changes.

Towards developing a bias invariant similarity metric for non-
rigid registration that also takes into account structural informa-
tion, we build on our previous work (Rivaz and Collins, 2012) to
incorporate image self-similarity into MI formulation. Self-similar-
ity estimates the similarity of a patch in one of the images to other
patches in the same image, and attributes the similarity to the pix-
els in the center of the patches. Based on patches, self-similarity
depends on local structures which are ignored by MI. Buades
et al. (2005) first proposed exploiting repetitive regions (or
patches) in the form of nonlocal means for image denoising. A re-
cent comparative study of these methods is provided in Buades
et al. (2010). Self-similarity was later used for object detection
and image retrieval (Shechtman and Irani (2007)), and it has since
been used successfully in denoising MR (Coupe et al. (2008); Man-
jon et al. (2012)) and US images (Coupe et al. (2009)), and image
segmentation (Coupe et al. (2011)). Compared to our previous
work (Rivaz and Collins (2012)), we present significantly more de-
tails and in-depth analysis of SeSaMI. We also provide extensive
results for validation and more analysis of the results.

Recently, Heinrich et al. (2011, 2012) proposed using self-simi-
larity for multimodal image registration. The similarity of a pixel to
its neighbors, calculated using sum of square differences (SSD), are
attributed to the pixel as multi-dimensional descriptors. These
descriptors are calculated independently for both images. The mul-
ti-modal image similarity is then defined as the SSD of the descrip-
tors of the two images.

Since self-similarity is calculated for pairs of points, it is natural
to perceive it in a graph representation where image pixels are ver-
tices and self-similarity is the weight of the edges. Graph-based
estimators of a-mutual information (a-MI) similarity metric have
recently been proposed for both rigid (Neemuchwala and Hero
(2005); Sabuncu and Ramadge (2008); Kybic (2007); Kybic and
Vnucko (2012)) and nonrigid (Staring et al. (2009); Oubel et al.
(2012)) registration applications. These methods have been shown

to outperform the traditional ‘‘plug-in’’ entropy estimators for MI
calculation. Therefore, we choose to incorporate self-similarity into
this registration framework.

We apply the method to register pre-operative magnetic reso-
nance (MR) images to intra-operative ultrasound (US) images in
the context of image-guided neurosurgery (IGNS). Previous work
that registers US to other modalities is relatively rare: Roche
et al. (2001) used the correlation ratio (CR) between US and MR
and MR gradient, Arbel et al. (2004) and Mercier et al. (2012b) cal-
culated a lookup table for mapping US and MR intensities and used
the monomodal registration of Collins et al. (1999); Kuklisova-
Murgasova et al. (2012) segmented the MR volume using a proba-
bilistic atlas, generated a US-like volume from the segmented MR
volume, and then registered the US-like volume with the US vol-
ume using robust monomodal block-matching techniques, Penney
et al. (2004) generated blood vessels probability maps from from
US and MR and registered these maps using cross-correlation, Ji
et al. (2008) used NMI of US and MR, Zhang et al. (2011) used MI
of phase information to register US to MR, De Nigris et al. (2012)
optimized MI of gradient orientations to register US to MR, Wein
et al. (2013) assumed a linear relationship between US intensities
and MR intensities and gradient magnitudes, and finally Heinrich
et al. (2013) used the self-similarity context along with a discrete
optimization approach through block-wise parametric transforma-
tion model with belief propagation.

Most of the aforementioned methods simulate US images from
the MR data as described. These methods cannot be readily ap-
plied to IGNS due to the variety of pathologies that the brain tis-
sue might have, such as different grade gliomas. The appearance
of these pathologies in MR and US are also highly variable (Mer-
cier et al., 2012b; Mercier et al., 2012a), adding to the difficulty.
We assume no a priori relationship between intensities but opt
for two nonparametric MI based methods for validating our
results.

Fig. 1 shows an example of the registered US and MR images.
The US images suffer from strong bias field due to signal attenua-
tion, caused by scattering (from smaller than US wavelength inho-
mogeneities), specular reflection (from tissue boundaries) and
absorption (as heat). In addition, US beam width varies signifi-
cantly with depth, and therefore the same tissue may look different
at different depths. A final and important source of spatial inhomo-
geneities is the time gain compensation (TGC) which is manually
adjusted on US machines. Hence, it is critical to exploit local
structures.

Our algorithm only needs the self-similarity of one of the
images. In most image guided applications, one of the images is
pre-operative, and therefore the self-similarity estimation can be
performed offline, resulting in a small increase in the on-line com-
putational complexity. In addition, the pre-operative image is also
usually of higher quality, making it a more attractive choice. We
use a rotation invariant self-similarity metric that is also robust
to bias fields, and utilize it in a graph-based a-MI method. We call
our method the Self Similarity a-MI (SeSaMI) algorithm. We show
that SeSaMI outperforms LMI and multi-feature a-MI in terms of
producing a smooth dissimilarity function and registration
accuracy.

This paper is organized as following. We first formulate the
problem of image registration as an optimization problem, and
provide background information for two popular similarity metrics
that we use in this work for comparisons. We then elaborate on
how we estimate self-similarity between patches. We explain a
graph-based a-MI similarity metric, and then formulate SeSaMI
by incorporating self-similarity into it. We also show how the
derivative of SeSaMI can be efficiently estimated. We finally show
the results on simulation and patient data for validation.

1 The probability distributions are infinite dimensional if we assume image
intensities take real continuous values. However, since intensities of digital images
are discrete and finite, the probabilities distributions are finite, but still very high
dimensional.
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