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a b s t r a c t

Prostate segmentation aids in prostate volume estimation, multi-modal image registration, and to create
patient specific anatomical models for surgical planning and image guided biopsies. However, manual
segmentation is time consuming and suffers from inter-and intra-observer variabilities. Low contrast
images of trans rectal ultrasound and presence of imaging artifacts like speckle, micro-calcifications,
and shadow regions hinder computer aided automatic or semi-automatic prostate segmentation. In this
paper, we propose a prostate segmentation approach based on building multiple mean parametric mod-
els derived from principal component analysis of shape and posterior probabilities in a multi-resolution
framework. The model parameters are then modified with the prior knowledge of the optimization space
to achieve optimal prostate segmentation. In contrast to traditional statistical models of shape and inten-
sity priors, we use posterior probabilities of the prostate region determined from random forest classifi-
cation to build our appearance model, initialize and propagate our model. Furthermore, multiple mean
models derived from spectral clustering of combined shape and appearance parameters are applied in
parallel to improve segmentation accuracies. The proposed method achieves mean Dice similarity coef-
ficient value of 0.91 ± 0.09 for 126 images containing 40 images from the apex, 40 images from the base
and 46 images from central regions in a leave-one-patient-out validation framework. The mean
segmentation time of the procedure is 0.67 ± 0.02 s.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Prostate adenocarcinoma is a major health problem and ac-
counted for over 70,000 deaths in European Union in 2008. World-
wide, around 899,000 people were detected with prostate cancer
in 2008 and it accounted for over 258,000 deaths (Ferlay et al.,
2010). Trans rectal ultrasound (TRUS) guided prostate biopsies per-
formed without the knowledge of cancer location in the prostate
often suffer from sampling errors. Approximately 30% of these
biopsies miss prostate cancer and often targeted re-biopsies result
in detection of cancer in 40% of the cases (Jemal et al., 2010). Accu-
rate prostate segmentation in TRUS may aid in biopsy needle
placement and multi-modal image fusion between TRUS and

magnetic resonance imaging (MRI) to improve malignant tissue
sampling during biopsy, as stated in Yan et al. (2010). Prostate
volume determined from segmented TRUS images serves as an
important parameter in determining the presence of benign or
malignant tumors during diagnosis and treatment of prostate dis-
eases. Often, prostate area and height in 2D axial mid-gland TRUS
slices are used in planimetry calculation, prolate ellipse volume
calculation, and in ellipsoid volume measurement technique to
determine the prostate volume. In prostate brachytherapy, oncolo-
gists prepare a set of manually segmented parallel TRUS images to
obtain the prostate volume to plan the placement of the seeds.
Hence, fast semi-automatic or automatic prostate segmentation
in 2D slices or 3D volume is often useful in diagnostic or treatment
procedures. However, accurate computer aided prostate segmenta-
tion from TRUS images is a challenging task due to the low contrast
of TRUS images, speckle, and shadow artifacts. Heterogeneous
intensity distribution inside the prostate gland and surrounding
tissues further hinder the development of a global segmentation
model based on intensities. The primary prostate segmentation
challenges in TRUS images are illustrated in Fig. 1.
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Added to these challenges the prostate shape and size may vary
significantly. In Fig. 2 we observe how prostate shape and size vary
across different datasets, while Fig. 3 illustrates an example of con-
trast variations with different machine manufacturers. Finally,
Fig. 4 shows the change in image contrast depending on the acqui-
sition parameters. Prostate shape and intensity prior models are
often used for prostate segmentation in ultrasound images. How-
ever, large variations in shape and intensity spaces adversely affect
the segmentation accuracies of these models.

2. Previous work and motivation

In the last decade, several segmentation methods have been
developed for segmentation of the prostate in TRUS, MRI and com-
puted tomography (CT) images, that are the three primary imaging
modalities that aid prostate cancer diagnosis and treatment.
Broadly, these methods could be categorized into contour and
shape based methods, region based methods, supervised and un-
supervised classification methods, and hybrid methods depending
upon the information used and the theoretical approach adopted
(Ghose et al., 2012b).

Contour and shape based methods use prostate boundary/edge
information to segment the prostate. Since, edge information is of-
ten unreliable in TRUS and CT images, and in the base and the apex
regions of the MR images prior shape information is incorporated
to provide better results (Ghanei et al., 2001; Shen et al., 2003;
Zhu et al., 2007; Mahdavi et al., 2011). Ghanei et al. (2001) used
a shape-constrained deformable mesh in a multi-resolution frame-
work to achieve 3D segmentation of the prostate. Cootes et al.
(1994) proposed to segment the prostate in MR slices using the
framework of active shape model (ASM) i.e. they proposed prostate
segmentation as one of the applications of their generic ASM mod-
el. Zhu et al. (2007) proposed a hybrid of 2D and 3D ASMs to seg-
ment the prostate in sparse MR datasets. Shen et al. (2003) used
rotationally invariant Gabor features computed with respect to
the TRUS probe in a multi-resolution and multi-orientation ASM
framework. The real and imaginary parts of Gabor features were
used for smoothing and edge detection, respectively. The ASM
was deformed in an hierarchical framework focusing on coarse to
fine Gabor features in multi-resolution. In recent years, Mahdavi
et al. (2011) used a tapered ellipsoid model to segment the pros-
tate. The authors used untapering and warping of the image to
make the shape of the prostate elliptical. After initial fitting, a
deformation model was used to get the final fitting of the prostate
boundary traced by interacting multiple modes probability density
association filter (Abolmaesumi and Sirouspour, 2004).

Region based methods use local intensity or statistics like mean
and standard deviation in an energy minimization framework to
achieve segmentation. The methods in this category primarily vary
depending on the energy minimization framework. For example, in
atlas-based methods, a model of the prostate is created from man-
ually segmented training images and intensity difference between
the model and a new un-segmented image is minimized (Klein
et al., 2008; Dowling et al., 2011). In contrast, in region based level
sets prior mean and standard deviation information of the prostate
region from manually segmented images are used to maximize the
distance between prostate and background regions depending on
region based statistical moments and propagate an implicitly de-
fined deformable model whose energy is minimized at the zone
of convergence of the two regions (Costa et al., 2007; Rousson
et al., 2005; Chen et al., 2009).

Supervised and un-supervised classification methods use
simple features like intensity or higher dimensional features like
filter responses to cluster and/or classify the image into prostate
and background regions. The objective of such methods is to group
similar objects together based on the feature vectors. Unlike region
based methods of energy minimization frameworks, a thresholding
scheme is used based on some proximity or distance measure to
group similar objects together (Zaim, 2005; Li et al., 2011; Liao
and Shen, 2011).

Hybrid methods combine information from contour, shape,
region and/or supervised or un-supervised classification informa-
tion to segment the prostate. These methods are more robust to
imaging artifacts and noise (Tutar et al., 2006; Zhan and Shen,
2006; Cosío, 2008; Yan et al., 2010; Makni et al., 2009; Martin
et al., 2010; Gao et al., 2010; Toth et al., 2011a; Song et al., 2009;
Li et al., 2011; Liao and Shen, 2011; Chen et al., 2011; Toth and
Madabhushi, 2012; Chowdhury et al., 2012). For instance, Tutar
et al. (2006) used the average of three manually delineated pros-
tate contours to construct a 3D mesh with spherical harmonics
to represent the average model of the prostate. The shape model
and region-based information were then combined in a Bayesian
framework to provide an energy function, which was minimized
to achieve segmentation. Zhan and Shen (2003) proposed to model
the texture space by classifying into prostate and non-prostate re-
gions by using support vector machines. The texture features were
determined by rotationally invariant Gabor filters and the classi-
fied feature space was subsequently used as an external force in
a deformable model framework to segment the prostate.

Cosío (2008) used Gaussian mixture modeling of prostate
location coordinate values and intensities to cluster prostate and
non-prostate regions. Finally, a Bayes classifier was used to achieve
a binary segmentation. A multi-population genetic algorithm with
four pose and ten shape parameters was used to optimize an ASM
in a multi-resolution framework to segment the prostate. To re-
duce the effect of shadow artifacts, Yan et al. (2010) used contrast
variations in normal vector profiles to automatically determine
salient points and provide prostate boundaries. Prior shape infor-
mation of the prostate shape aided to determine the missing points
in shadow regions in TRUS images. Optimal search performed
through vector profiles perpendicular to the salient points was
used to determine prostate boundary with a discrete deformable
model in a multi-resolution, energy minimization framework. In
an approach similar to the method of Cosío (2008), Makni et al.
(2009) modeled the intensities of the prostate region as a mixture
of Gaussians. They proposed a Bayesian approach where the prior
probability labeling of the voxels was achieved by using a shape re-
stricted deformable model and Markov field modeling. The condi-
tional probability was associated with the modeled intensity
values, and the segmentation was achieved by estimation of an
optimum label for prostate boundary pixels in a MAP decision
framework.

Fig. 1. Prostate segmentation challenges, A = low contrast, B = micro calcification,
C = intensity heterogeneity inside prostate, D = speckle noise (Yan et al., 2010).
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