
Non-local statistical label fusion for multi-atlas segmentation

Andrew J. Asman a,⇑, Bennett A. Landman a,b,c

a Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA
b Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
c Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37235, USA

a r t i c l e i n f o

Article history:
Received 7 May 2012
Received in revised form 19 October 2012
Accepted 29 October 2012
Available online 29 November 2012

Keywords:
Multi-atlas segmentation
Label fusion
STAPLE
Non-local means
Rater models

a b s t r a c t

Multi-atlas segmentation provides a general purpose, fully-automated approach for transferring spatial
information from an existing dataset (‘‘atlases’’) to a previously unseen context (‘‘target’’) through image
registration. The method to resolve voxelwise label conflicts between the registered atlases (‘‘label
fusion’’) has a substantial impact on segmentation quality. Ideally, statistical fusion algorithms (e.g., STA-
PLE) would result in accurate segmentations as they provide a framework to elegantly integrate models
of rater performance. The accuracy of statistical fusion hinges upon accurately modeling the underlying
process of how raters err. Despite success on human raters, current approaches inaccurately model multi-
atlas behavior as they fail to seamlessly incorporate exogenous intensity information into the estimation
process. As a result, locally weighted voting algorithms represent the de facto standard fusion approach in
clinical applications. Moreover, regardless of the approach, fusion algorithms are generally dependent
upon large atlas sets and highly accurate registration as they implicitly assume that the registered atlases
form a collectively unbiased representation of the target. Herein, we propose a novel statistical fusion
algorithm, Non-Local STAPLE (NLS). NLS reformulates the STAPLE framework from a non-local means per-
spective in order to learn what label an atlas would have observed, given perfect correspondence.
Through this reformulation, NLS (1) seamlessly integrates intensity into the estimation process, (2) pro-
vides a theoretically consistent model of multi-atlas observation error, and (3) largely diminishes the
need for large atlas sets and very high-quality registrations. We assess the sensitivity and optimality of
the approach and demonstrate significant improvement in two empirical multi-atlas experiments.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Segmentation of anatomical structures on medical images is
essential for scientific inquiry into the complex relationships be-
tween biological structure and function as well as clinical diagno-
sis, treatment, and assessment. The long-held ‘‘gold standard’’ for
highly robust segmentation has been through expert manual delin-
eation (Crespo-Facorro et al., 1999; Tsang et al., 2008). Yet, manual
delineation is extremely resource consuming and plagued by inter-
and intra-rater variability (e.g., 10–20% by volume (Ashton et al.,
2003; Joe et al., 1999)). Alternatively, fully-automated algorithms
often result in robust and accurate estimations for specific classes
of problems (e.g., brain-tissue classification (Cocosco et al., 2003;
Van Leemput et al., 1999; Wells III et al., 1996), optic nerve seg-
mentation (Noble and Dawant, 2011)). Unfortunately, the success
of automated techniques is often dependent upon the application,

modality, and image quality (Fischl et al., 2002; Heckemann et al.,
2006; Rohlfing et al., 2004a; Yeo et al., 2008).

Atlas-based segmentation methods form a middle-ground be-
tween fully-manual and fully-automatic segmentation approaches
(Collins et al., 1995; Gee et al., 1993). In atlas-based models, spatial
information is transferred from an existing dataset (labeled atlas)
to a previously unseen context (target) through deformable regis-
tration. Proposed extensions enable the summary of multiple at-
lases into a common coordinate system by constructing (1)
unbiased average atlases (Guimond et al., 2000; Joshi et al.,
2004) and (2) target-specific atlases (Commowick et al., 2009;
Ericsson et al., 2008). Yet, the accuracy of single-atlas based meth-
ods is limited due to the bias concerns and lack of correspondence
to the target (Ashburner and Friston, 2005; Han and Fischl, 2007).
Thus, an alternative strategy that independently utilizes multiple
atlases (i.e., multi-atlas segmentation) has come to represent the
de facto standard baseline for atlas techniques. In multi-atlas seg-
mentation (Heckemann et al., 2006; Rohlfing et al., 2004b), multi-
ple atlases are separately registered to the target and the voxelwise
label conflicts between the registered atlases are resolved using la-
bel fusion.
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Perhaps surprisingly, a majority vote, the simplest fusion strat-
egy, has been shown to result in highly robust segmentations
(Aljabar et al., 2009; Heckemann et al., 2006; Rohlfing et al.,
2004a; Rohlfing and Maurer, 2007). More recently, weighted
voting strategies that use global (Artaechevarria et al., 2009; Chen
et al., 2012), local (Isgum et al., 2009; Sabuncu et al., 2010; Wang
et al., 2011), semi-local (Sabuncu et al., 2010; Wang et al., 2012),
and non-local (Coupé et al., 2011) intensity similarity metrics have
demonstrated consistent improvement in segmentation accuracy.
Particularly for neurological applications, highly local weights have
provided the most consistent results in segmentation quality
(Artaechevarria et al., 2009; Sabuncu et al., 2010).

In contrast to ad hoc voting, statistical fusion strategies (e.g.,
Simultaneous Truth and Performance Level Estimation, STAPLE
(Warfield et al., 2004)) directly integrate a stochastic model of rater
behavior into the estimation process. Despite elegant theory and
success on human raters, applications to the multi-atlas context
have proven problematic (Asman and Landman, 2011a; Sabuncu
et al., 2010; Wang et al., 2011, 2012). In response, a myriad of
advancements to the STAPLE framework have been proposed to ac-
count for (1) spatially varying task difficulty (Asman and Landman,
2011b; Rohlfing et al., 2004b), (2) spatially varying rater perfor-
mance (Asman and Landman, 2011a, 2012a; Commowick et al.,
2012; Weisenfeld and Warfield, 2011), and (3) instabilities in the
rater performance level parameters (Commowick and Warfield,
2010; Landman et al., 2011b). Yet, these advanced techniques re-
main inherently models of human observation error as they fail
to directly incorporate the image intensity differences between
the atlases and the target. Moreover, initial attempts to incorporate
intensity into the STAPLE framework have relied upon ad hoc
extensions that simply ignore voxels based upon a priori similarity
measures (Cardoso et al., 2011; Weisenfeld and Warfield, 2011).

Regardless of the approach, label fusion models have consis-
tently made an implicit assumption that the use of multiple atlases
results in a voxelwise, collectively unbiased representation of the
target. This assumption is manifested through the fact that nearly
all fusion algorithms determine the optimal label using only
directly corresponding intensity and label information. Ergo,
multi-atlas methods are generally dependent upon highly accurate
registration and the use of large numbers of atlases. We are left
with several problems in multi-atlas segmentation: (1) a depen-
dence on large-scale, high-quality registrations, (2) voting-based
algorithms lack the theoretical underpinning of statistical fusion
observation models and (3) statistical fusion algorithms fail to
incorporate intensity information. Thus, previous approaches have
failed to accurately model the stochastic process of registered atlas
observation error.

Meanwhile, a relatively new framework in the field of image
analysis, non-local means, has gained momentum in terms of
quantifying complex image characteristics (e.g., noise structure,
spatially varying correspondence). In non-local means, images
are deconstructed into a collection of small volumetric patches
and the similarity or correspondence between these patches is
quantified to learn the underlying image structure (Buades et al.,
2005). The non-local means framework has emerged in the context
of image de-noising (Buades et al., 2005; Coupé et al., 2006; Kervr-
ann et al., 2007; Liu et al., 2008; Manjón et al., 2008; Van De Ville
and Kocher, 2009). However, more recent work has demonstrated
the applicability of non-local means to new applications such as
synthesizing image contrast (Roy et al., 2010a), in-painting (Sun
and Tappen, 2011), and image segmentation (Coupé et al., 2011;
Roy et al., 2010b).

Herein, we propose a novel statistical fusion algorithm (Non-Local
STAPLE – NLS) that reformulates the STAPLE framework from a
non-local means perspective. NLS models the registered atlases as
collections of volumetric patches containing both intensity and

label information and uses the non-local criteria (Buades et al.,
2005; Coupé et al., 2011) to resolve imperfect correspondence.
Through this reformulation, we seamlessly integrate exogenous
intensity information into the estimation process to provide a the-
oretically consistent model of multi-atlas observation error. NLS
provides a model in which we learn which label each atlas would
have observed given perfect correspondence with the target. This
presentation is an extension and generalization of a recently pub-
lished conference paper (Asman and Landman, 2012b). Herein, we
provide additional examples, derivations and insights that were
not part of the original conference publication.

In this manuscript, we begin by deriving the theoretical basis
and the parameters for initialization and convergence governing
NLS. Next, we demonstrate significant improvement over the
state-of-the-art fusion algorithms on two distinct datasets: (1)
computed tomography (CT) images for thyroid segmentation and
(2) structural magnetic resonance (MR) images for whole-brain
segmentation. For whole-brain segmentation, we demonstrate that
NLS dramatically lessens the need for large-scale and highly accu-
rate non-rigid registration. Lastly, we provide insight into the sen-
sitivity of NLS to the various model parameters, assess the
optimality of the algorithm, and provide a comparison to a direct
application of non-local voting.

2. Theory

The following presentation provides the theoretical model gov-
erning NLS in the commonly used Expectation–Maximization (EM)
framework (Dempster et al., 1977). For clarity and consistency, the
notation closely follows the presentation of the original STAPLE
algorithm (Warfield et al., 2004).

2.1. Problem definition

Consider a target gray-level image represented as a vector,
I 2 RN�1. Let T 2 LN�1 be the latent representation of the true target
segmentation, where L = {0, . . . ,L � 1} is the set of possible labels
that can be assigned to a given voxel. Consider a collection of R reg-
istered atlases with associated intensity values, A 2 RN�R, and label
decisions, D e LN�R. Let h 2 RR�L�L parameterize the performance le-
vel of raters (registered atlases). Each element of h, hjs0s, represents
the probability that rater j observes label s0 given that the true label
is s at a given target voxel and the corresponding voxel on the asso-
ciated atlas—i.e., hjs0s � f ðDi� j ¼ s0;AjjTi ¼ s; Ii; hjs0sÞ, where i� is the
voxel on atlas j that corresponds to target voxel i. Throughout,
the index variables i, i� and i0 will be used to iterate over the voxels,
s and s0 over the labels, and j over the registered atlases.

2.2. The non-local STAPLE algorithm

As with other statistical fusion algorithms, NLS uses EM to esti-
mate the true (latent) segmentation based on the target intensities,
atlas information, and the rater performance level parameters (see
Fig. 1 for a graphical summary of NLS). In traditional EM terminol-
ogy, the underlying voxelwise label probabilities represent the hid-
den data that we are estimating, and the performance level
parameters, h, represent the hidden model parameters that help
determine the optimal solution for the target segmentation. The
estimation of these parameters is accomplished by iterating be-
tween the E-step (i.e., the estimation of the voxelwise label proba-
bilities) and the M-step (i.e., the estimation of the performance
level parameters that maximize the expected value of the condi-
tional log likelihood function). Before presenting the derivation of
our EM-based approach, we define our non-local correspondence
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