
Lifetime-based TCP service differentiation

I. Nikolaidis*,1, X. Wu

Computing Science Department, University of Alberta, Edmonton, Alta., Canada T6G 2E8

Received 18 June 2004; accepted 18 June 2004

Available online 19 August 2004

Abstract

We present a lifetime-based differentiation framework for TCP flows. The separation into two classes is based on a threshold technique.

We introduce a scheme, FairShare, that handles the long-lived flows and achieves global max–min fairness. The short-lived flows are

bundled together and a separate family of mechanisms, DAS, dynamically allocate bandwidth to match the load of newly instantiated short

flows. Thus, two different objectives are met: fairness for the long flows, as well as reduced response times and reduced response time

variance for the short flows. We argue that the applications are better served this way. Namely, applications generating short transfers are

predominantly interested in short response times (e.g. HTTP requests/responses) while those generating long transfers (e.g. long FTP

transfers) are at least provided a guarantee they are not penalized compared to other similar connections. By way of an example, we also

demonstrate that elaborate traffic control schemes that do not perform classification of flows based on their anticipated lifetimes, may fail to

efficiently utilize the network links.

q 2004 Elsevier B.V. All rights reserved.

Keywords: TCP; Fairness; Bandwidth allocation; Active queue management

1. Introduction

Research on the topic of controlling networks carrying

TCP traffic, such as the Internet, frequently confronts the

question whether information about ‘flows’, i.e. the call-

level dynamics of the system, should be collected and used

in controlling the network. In telephone networks, call-level

control is certainly the norm. In the Internet, a flow/call is

recognized as such only by the endpoints and not by the

network interior, i.e. not by the routers on the path from

source to destination. A quick review of the relevant

literature suggests that the lifetime of TCP flows follows a

heavy-tailed distribution [1,6,13]. That is, TCP flows are in

their majority short-lived but a small fraction of long-lived

flows accounts for a large fraction of the total carried traffic.

It is questionable whether dealing with each short TCP flow

individually for resource allocation makes any sense. The

volume of control plane signalling would be prohibitive,

and even then, the horizon over which it can assist the

resource allocation process is limited due to the quick

termination of such connections. Therefore, it is preferable

to deal with short flows in one bulk class, investing on state

information for the entire class instead for individual flows.

The particular approach admits as a possible design one

where the long flows are still treated on a per-flow basis. The

heavy-tailed behavior of connection lifetimes also suggests

that, at any point in time, only a handful of flows crossing a

link are long-lived, thus, the total state overhead necessary

to keep track of the long flows appears to be manageable.

The view taken in this paper is that long and short flows

should be treated separately in terms of received service.

Towards this end, we use a threshold-based classification of

flows into short and long. However, the most important

element of the presented work is that the separation of flows

according to their lifetime is not only beneficial in terms of

state overhead, but also beneficial for the performance

received by end users. Namely, we conjecture that the most

significant performance attribute for a short flow is its

Computer Communications 28 (2005) 108–124

www.elsevier.com/locate/comcom

0140-3664/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.06.015

* Corresponding author.

E-mail addresses: yannis@cs.ualberta.ca (I. Nikolaidis), xudong@

cs.ualberta.ca (X. Wu).
1 Supported in part by an operating grant from the Natural Sciences and

Engineering Research Council of Canada (NSERC).

http://www.elsevier.com/locate/comcom


response time2 while fairness is important (and better

defined) for long-lived flows. Two observations support this

particular thesis. First, the bulk of short flows are the results

of HTTP request/responses [6]. Clearly, users are keen on

receiving responses without any undue delay. Furthermore,

avoiding frequent large response times (thus avoiding large

variance of the response times) enhances the user’s

perceived performance of the network as being more

consistent. The second element relates to long flows that

are invariably long file transfers, over FTP or HTTP, and

streaming of data. The least guarantee that should be

provided to users is that their long flow is not treated

any worse than any other long flow. Thus, fairness appears

to be natural and essential for long flows. Moreover, it is

technically difficult, and even non-sensical, to consider

fairness between a short TCP flow and a long TCP flow. The

short flows are inherently limited by the initial transient of

the TCP window adjustment, being by their very design at a

disadvantage against long flows. On the other hand, long

flows amount for a large fraction of the packets transferred

and controlling their long term behavior is one of the ways

that the entire network performance can be controlled.

Lifetime-based classification schemes were originally

presented in Refs. [9,14,16,21,24] to protect short TCP

flows from the negative impact of the long ones. In particular,

short flows are at a disadvantage when competing against

long ones. This is due to the conservative nature of TCP

congestion control: short flows usually operate with small

congestion window size in the exponential growth phase.

Since short flows have less data to transfer, they terminate

within a few round-trip times (RTTs) without enough time

to enlarge their congestion window to enter the congestion

avoidance phase. The operation with relatively small

congestion window impacts the short flows in two ways.

It imposes a limit on the delivery rate of packets, but also

renders connections more fragile to packet loss. Since long

flows operate in congestion avoidance, upon packet loss

they usually reduce their delivery rate less drastically, by

reducing their congestion windows by half. However,

packet losses are likely to initiate timeouts in short flows

because few packets are in transit to allow for the triple-

dupACK ‘fast retransmission’ to be invoked. Another

disadvantage of short-lived TCP flows is that adequate

RTT samples are unavailable, and hence the retransmission

timeout (RTO) value is usually a large (conservative) value

possibly equal to the estimated initial timeout value of RTO,

which is much larger than typically observed RTT values in

the Internet.

Summarizing, there appears to exist no particular

advantage to mixing short- and long-lived flows together.

Indeed, there appear to exist evidence in support of

separation. The only compelling reason for bundling short

and long flows together is for the benefit of multiplexing.

Nevertheless, we can still achieve multiplexing without

losing sight of the fact that the performance needs of the two

classes can be met using (flexible) boundaries between

them. Such boundaries can be enforced in the form of

controlled (scheduled) multiplexing. We are therefore

proposing a hybrid DiffServ and IntServ paradigm with (a

top-level) DiffServ across lifetime classes, and IntServ

applied within only the long-lived flow class. In the familiar

abstraction of routing domains, we expect the classification

of flows into short and long to take place at the access or

edge routers, presenting to the core routers one class for the

bulk of all short flows and one class, with individually

accounted for, long flows. The two classes could even be

considered as routed, in principle, independently of each

other. We note that the design presented here is meant to

provide a least common denominator to separate and service

accordingly short and long flows. Further refinement of the

classification, with possibly separate classes for UDP or

specific applications can be built upon the basic design.

Suffice is to say that once separated into classes, a minimum

requirement is to allocate per-class bandwidth at the link

schedulers in the core of the network. Such allocation can be

accomplished by one of the many variants of weighted fair

queueing (WFQ) that are increasingly commonplace in

modern router designs.

The rest of the paper is divided into two major parts. Part

I, describes how a single loss scheduler for long flows can be

used to drive the flows sharing a link to max–min fairness,

and in the process drive the entire network of long flows into

global fairness. The details of the scheme, called Fair-
Share are presented in Section 2. Part II, describes how the

short versus long flow separation can be performed and how

following the dynamics of the number of short flows

admitted into the system can be used to guide the bandwidth

allocated to the short flow class, leading to improved

response times for the short flows and without sacrificing

any of the properties attained by FairShare for the long

flows. The details of the dynamic allocation of bandwidth to

short flows are given in Section 3. Finally, Section 4

summarizes the results produced so far, places our work

within the context of previous related research, and reviews

certain technical issues that need further refinement.

Throughout this paper we use two ‘adversaries’ when

comparing the performance of our schemes. These are

DropTail, representing simplicity, and random early detec-

tion (RED) [2,3] representing a scheme that does not

compromise simplicity while attaining higher flexibility.

2. Part I: long TCP flows

We first deal with the issue of fairness among long-lived

flows. TCP unfairness, rooted in the different RTT values of

different TCP flows, has been identified a decade ago, but

2 We define as response time the duration between the timepoint when a

connection setup starts and until the timepoint when the last data packet of

the connection is successfully acknowledged.

I. Nikolaidis,, X. Wu / Computer Communications 28 (2005) 108–124 109



Download English Version:

https://daneshyari.com/en/article/10338176

Download Persian Version:

https://daneshyari.com/article/10338176

Daneshyari.com

https://daneshyari.com/en/article/10338176
https://daneshyari.com/article/10338176
https://daneshyari.com

