
A simulation study of the Adaptive RIO (A-RIO) queue

management algorithm

Julio Orozcoa,b, David Rosa,*, José Incerac, Rodolfo Cartasc

aGET/ENST Bretagne, rue de la Châtaigneraie, CS 17607, 35576 Cesson Sévigné Cedex, France
bIRISA/INRIA Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France

cITAM, Rı́o Hondo No. 1, Sn. Angel, 01000, México D.F., Mexico

Received 14 October 2004; accepted 14 October 2004

Available online 28 November 2004

Abstract

Active queue management (AQM) algorithms are useful not only for congestion avoidance purposes, but also for the differentiated

forwarding of packets, as is done in the DiffServ architecture. It is well known that correctly setting the parameters of an AQM algorithm may

prove difficult and error-prone. Besides, many studies have shown that the performance of AQM mechanisms is very sensitive to network

conditions. In this paper we present a detailed simulation study of an Adaptive RIO (A-RIO) AQM algorithm which addresses both of these

problems. A-RIO, first introduced by Orozco and Ros (2003), draws directly from the original RIO proposal of Clark and Fang (1998) and the

Adaptive RED (A-RED) algorithm described by Floyd et al. (2001). Our results, based on ns-2 simulations, illustrate how A-RIO improves

over RIO in terms of stabilizing the queue occupation (and, hence, queuing delay), while maintaining a high throughput and a good protection

of high-priority packets; A-RIO could then be used for building controlled-delay, AF-based services. These results also provide some

engineering rules that may be applied to improve the behaviour of the classical, non-adaptive RIO.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Active queue management; DiffServ; IP networks; Quality of service

1. Introduction

Active queue management (AQM) is the name given to a

type of router mechanisms used in congestion control. AQM

mechanisms manage queue lengths by dropping1 packets

when congestion is building up [1], that is, before the queue

is full. End-systems can then react to such losses by

reducing their packet rate, hence avoiding severe conges-

tion. Random Early Detection (RED) [2] is one of the first

AQM mechanisms to have been proposed, and the one that

has been most studied. RED intends to avoid congestion by

randomly discarding packets based on the average queue

size.

AQM mechanisms are also relevant in the context of

DiffServ. The DiffServ architecture has been defined by the

IETF to provide IP networks with scalable QoS processing

of traffic aggregates, based on a special field in the IP header

[3]. The value of this field tells a router what particular

treatment, the per-hop behaviour (PHB), should be applied

to the packet.

One of the standard PHBs is Assured Forwarding (AF)

[4]. AF defines the differentiated forwarding of packets

classified in up to four classes. Packets from different

classes are processed in different physical queues, managed

by a scheduling mechanism. Within each class (or queue),

there can be up to three drop precedences. Under

congestion, packets marked with the highest priority—that

is, the lowest drop precedence—should be the last to be

discarded, and vice versa. Such differentiated discarding

inside a single queue can be achieved by means of special

AQM mechanisms, which are usually extensions of RED.

Computer Communications 28 (2005) 300–312

www.elsevier.com/locate/comcom

0140-3664/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.10.013

* Corresponding author. Tel.: C33 2 99 12 70 46; fax: C33 2 99 12 70

30.

E-mail addresses: julio.orozco@irisa.fr (J. Orozco), david.ros@

enst-bretagne.fr (D. Ros), jincera@itam.mx (J. Incera), rodolfo@

mcculloch.cannes.itam.mx (R. Cartas).
1 Or marking, if a mechanism such as Explicit Congestion Notification

(ECN) is used.

http://www.elsevier.com/locate/comcom


In this paper we describe an adaptive AQM algorithm,

which we call Adaptive RIO (A-RIO), suitable for building

an AF per-hop behaviour. A-RIO is a straightforward

combination of the Adaptive RED (A-RED) algorithm

described by Floyd et al. [5] and the RIO algorithm of Clark

and Fang [6]. The goal of A-RIO is threefold: (1) to simplify

the configuration of DiffServ-enabled routers, by alleviating

the parameter setting problem most AQM algorithms

present; (2) to automatically translate a quality-of-service

parameter (that is, delay) into a set of router parameters; (3)

to try to stabilize queue occupation around a target value

under heavy network load, irrespective of traffic profile.

This paper is organized as follows. In Section 2, we

discuss the AQM and DiffServ issues that define the context,

motivation and basis of our proposal. In Section 3, the A-

RIO algorithm is described in detail. In Section 4, we report

on the process and results of a simulation study of A-RIO.

Conclusions and perspectives are provided in Section 5.

2. Active queue management in DiffServ networks

The main goal of Active Queue Management (AQM)

mechanisms in best-effort networks is congestion avoid-

ance. The well-known RED algorithm avoids congestion by

controlling the average queue size and comparing it against

two thresholds, minth and maxth. Within this region, packets

are discarded using a linear probability function of the

average queue size. Besides minth and maxth, RED requires

to set up two other parameters: a maximum drop probability

maxp for early discard and an absorption factor used in the

average queue size function wq. To the best of our

knowledge, there are no precise rules for tuning these

parameters; on the contrary, most published results point at

the difficulty of finding a robust RED configuration (see for

instance [7,8]).

In a DiffServ environment, the AQM mechanisms are

used mainly for prioritized discard. RED with In and Out

(RIO) [6] is the basic mechanism to set up an AF PHB. RIO

is a direct extension of RED that uses two sets of parameters

to differentiate the discard of In (in-profile) and Out (out-of-

profile) packets. For deciding whether to discard Out

packets, RIO uses the average size of the total queue,

formed by In and Out packets. For In packets, it uses the

average size of a virtual queue formed only by In packets.

RIO has been extended to handle nO2 precedences

following the same principles.2 The discard probability for

packets of precedence 1%j!n depends on the average size

of a virtual queue containing only the packets with

precedences 1 to j. For packets with precedence n (i.e. the

lowest priority), the discard probability is a function of

the average occupation of the ‘physical’ (total) queue. This

method was eventually called RIO-C (Coupled) to differ-

entiate it from others proposed later. For example, Weighted

RED (WRED) [9] uses the total average queue size for all

precedences, whereas RIO-DC (Decoupled) [10] calculates

the drop probability for packets of precedence j as a function

of the average number of packets of the same precedence

only.

RIO-C discriminates packets of different precedences in

three ways. The first one lies in the coupled calculation of

the discard probability; the fact that the discard probability

for precedence j uses the average number of packets of all

lower precedences yields a significant discrimination. The

second way is the use of different thresholds for different

precedences, so that discard begins ‘earlier’ for packets of

higher precedences. The third one is the use of drop

probabilities that increase at different rates for different

priorities. Note that the last two ways of achieving

differentiation are based simply on different parameter

settings, and that they are not mutually exclusive.

The parameter setting problem gets magnified with RIO:

for a n-precedence RIO, in principle 3nC1 parameters

should be set: 2n thresholds, n maximum drop probabilities,

and the averaging weight wq—assuming it is the same for all

virtual queues. This problem has become a subject of

research. Studies such as [11] illustrate the difficulty of

tuning RIO in order to achieve a predictable performance.

This issue is very relevant, since a key idea behind DiffServ

is to allow the provisioning of enhanced services. The

operator should know how to set up services with some

(loose) guarantees in rate or delay.

3. An adaptive RIO (A-RIO) algorithm

Different approaches have been proposed in the literature

for dealing with the tuning of RED (see for instance [8,12]).

The one taken by the Adaptive RED (A-RED) [5] algorithm

is to dynamically adjust RED’s operation parameters based

on the measured traffic load at the router.

A-RIO, first introduced in [13], is a direct extension of

both A-RED and RIO-C algorithms. It follows the approach

of the former, performing an on-line automatic adaptation of

the mechanism to get a more predictable performance,

together with a more straightforward parameter tuning. We

have chosen A-RED because of its simplicity, both in

concept and in implementation.

With this proposal, we intend to alleviate the problem of

parameter tuning in the context of DiffServ AF networks.

Like A-RED, A-RIO needs a single input parameter, the

target delay, which is translated into the required set of

router parameters. This feature could be very interesting for

providers of differentiated services: configuring routers in

terms of delay—a QoS metric directly related to service

specifications and customer requirements—should be much

2 In the nZ3 case, packet drop precedences are usually identified by

colors: green for the lowest precedence, yellow for the middle one and red

for the highest one.

J. Orozco et al. / Computer Communications 28 (2005) 300–312 301



Download English Version:

https://daneshyari.com/en/article/10338573

Download Persian Version:

https://daneshyari.com/article/10338573

Daneshyari.com

https://daneshyari.com/en/article/10338573
https://daneshyari.com/article/10338573
https://daneshyari.com

