
A passive testing approach based on invariants: application
to the WAP q

Emmanuel Bayse a, Ana Cavalli a,*, Manuel Núñez b, Fatiha Zaı̈di a

a Institut National des Télécommunications, GET-INT, LOR, 9 rue Charles Fourier, 91011 Evry cedex, France
b Dept. Sistemas Informáticos y Programación, Universidad Complutense de Madrid, E-28040 Madrid, Spain

Received 6 November 2003; received in revised form 11 May 2004; accepted 8 September 2004

Available online 12 January 2005

Responsible Editor: R. Gotzhein

Abstract

This paper presents a new methodology to perform passive testing based on invariants. This novel approach is sup-

ported by the following idea: a set of invariants represent the most relevant expected properties of the implementation

under test. Intuitively, an invariant expresses the fact that each time the implementation under test performs a given

sequence of actions, then it must exhibit a behavior reflected in the invariant. For example, an invariant such as i1/

o1, . . ., in�1/on�1, in/O must be interpreted as ‘‘each time the implementation performs the sequence i1/o1, . . ., in�1/on�1, in
the next observed output belongs to the set O’’. We call these invariants simple invariants. In this work we introduce a

new notion of invariants to deal with more subtle properties. For instance, we will consider invariants to express prop-

erties such as ‘‘if y happens then we must have that x had happened before’’. These invariants are called obligation invar-

iants. We present algorithms to decide the correctness of the proposed invariants with respect to a given specification.

Once we have that an invariant is correct with respect to a given specification, we check whether the execution traces

observed from the implementation respect the invariant. In order to perform this phase we present two algorithms

based, respectively, on left-to-right and right-to-left pattern matching algorithms.

In addition to the theoretical framework we have developed a software tool, called TESTESTINVNV, that helps in the auto-

mation of our passive testing approach. In particular, the algorithms presented in this paper are fully implemented in

1389-1286/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2004.09.009

q Research supported in part by the Spanish Ministerio de Ciencia y Tecnologı́a MCyT project MASTER (TIC2003-07848-C02-01),

the Junta de Castilla-La Mancha project DISMEF (PAC-03-001) and the Marie Curie RTN TAROT (MCRTN 05121). This research

was carried out while the third author was visiting the GET-INT under the financial support of the Platonis project.
* Corresponding author. Tel.: +33 1 60 76 44 27; fax: +33 1 60 76 47 11.

E-mail addresses: emmanuel.bayse@int-evry.fr (E. Bayse), ana.cavalli@int-evry.fr (A. Cavalli), mn@sip.ucm.es (M. Núñez),

fatiha.zaidi@int-evry.fr (F. Zaı̈di).

Computer Networks 48 (2005) 247–266

www.elsevier.com/locate/comnet

mailto:emmanuel.bayse@int-evry.fr 
mailto:ana.cavalli@int-evry.fr 
mailto:mn@sip.ucm.es 
mailto:fatiha.zaidi@int-evry.fr 


the tool. Finally, in order to test the usefulness of our approach we have chosen a real-life case study: the Wireless

Application Protocol (WAP). We present a test architecture as well as the most relevant results obtained from the appli-

cation of our approach to the WAP.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Passive testing; Conformance testing; Invariants; Software tools for testing; Wireless Application Protocol (WAP)

1. Introduction

The activity of conformance testing is essen-

tially focused on verifying the conformity of a

given implementation to its specification. In most

cases testing is based on the ability of a tester that

stimulates the implementation under test and

checks the correction of the answers provided by

the implementation [10,13]. However, in some sit-

uations this activity becomes difficult and even
impossible to perform. For example, this is the

case if the tester is not provided with a direct inter-

face to interact with the implementation under test

(IUT). Another conflictive situation appears when

the implementation is built from components that

are running in their environment and cannot be

shutdown or interrupted for a long period of time.

In these situations, there is a particular interest in
using other types of testing techniques such as pas-

sive testing. In passive testing the tester does not

need to interact with the IUT. On the contrary,

the execution traces are observed without interfer-

ing with the behavior of the IUT. Passive testing

has very large domains of application. For in-

stance, it can be used as a monitoring technique

to detect and report errors (this is the use that
we consider in this paper). Another area of

application is in network management to detect

configuration problems, fault identification, or re-

source provisioning (e.g. [14,21]). It can be also

used to study the feasibility of new features as clas-

ses of services, network security, and congestion

control.

Even though passive testing techniques are not
new (see for example the approach shown in [1])

in the last years a very active research on passive

testing has been developed. Usually, the execution

traces of the implementation are compared with

the specification to detect faults in the implementa-

tion [12,15,18,19]. In general, the specification has

the form of a finite state machine (FSM) and the

work consisted in verifying that the executed trace
is accepted by the FSM specification. A drawback

of these first approaches is the low performance

of the proposed algorithms (in terms of complexity

in the worst case) if non-deterministic specifica-

tions are considered.

A new approach was proposed in [6]. There, a

set of properties, called invariants, were extracted

from the specification and checked on the traces
observed from the implementation to test their

correctness. That is, in this approach information

was extracted from the specification and then used

to process the trace. However, one of the draw-

backs of this work is the limitation on the gram-

mar used to express invariants. For instance,

properties as

Each time that a user asks for connection and the

connection is granted, if after performing some oper-

ations the user asks for disconnection then he is

disconnected.

could not be easily represented by using their

invariants since all the possible sequences of ac-

tions expressing the idea of some operations must

be explicitly written.
A new formalism to express invariants was pre-

sented in [2]. For instance, the possibility of spec-

ifying wild-card characters in invariants was

added. Besides, a set of outputs was allowed (in-

stead of a single output) as termination of the

invariant. Thus, properties such as

Each time that a user asks for a resource (e.g. a web

page) either the resource is obtained or an error is

produced.

could be easily specified. However, heavy experi-

mentation using the invariants approach reported

in [2,6] has shown additional lines for improve-

ment. For example, properties such as

248 E. Bayse et al. / Computer Networks 48 (2005) 247–266



Download	English	Version:

https://daneshyari.com/en/article/10339239

Download	Persian	Version:

https://daneshyari.com/article/10339239

Daneshyari.com

https://daneshyari.com/en/article/10339239
https://daneshyari.com/article/10339239
https://daneshyari.com/

