
A note on efficient implementation of prime
generation algorithms in small portable devices

Chenghuai Lu *, Andre L.M. Dos Santos

Georgia Institute of Technology, College of Computing, 801 Atlantic Drive, Atlanta, GA 30309, United States

Received 23 December 2003; received in revised form 2 December 2004; accepted 17 December 2004

Available online 23 March 2005

Responsible Editor: G. Schaefer

Abstract

This paper investigates existing prime generation algorithms on small portable devices, makes optimizations and

compares their efficiencies. It shows by comparing the performances that the bit array algorithm is the most efficient

among all the existing prime generation algorithms. The paper further optimizes the implementation of the bit array

algorithm by using an optimal parameter in the prime generations, namely the small prime set for its sieving procedure.

A method for estimating the optimal small prime set for the bit array algorithm is provided. The paper gives generalized

bit array algorithms which are able to find primes with special constraints, i.e., DSA primes and strong primes. Finally,

the algorithms are implemented in a smart card and a PDA for validation. It shows that there is very little efficiency

sacrifice for generating special primes with respect to generating random primes. It also shows that using optimal sets

of small primes for prime generations will result in 30–200% efficiency improvement.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Public key cryptography; Smart card; Primality test; Sieve procedure

1. Introduction

Cryptographic functions based on public key

cryptography [6,19] have gained increasing atten-
tion from the research and commercial communi-

ties, as well as from end users. The use of public

key cryptography can add security to a wide vari-

ety of applications. Especially, public key cryptog-

raphy is a valuable tool for simplifying key

management and enabling secure communica-
tions. Recently, there is a strong trend to use pub-

lic key cryptography in small portable devices such

as smart cards and handheld PDA�s to enable

them to perform secure transactions. Those de-

vices should be able to implement one or multiple

1389-1286/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2004.12.007

* Corresponding author. Tel.: +1 404 822 8849.

E-mail address: lulu@cc.gatech.edu (C. Lu).

Computer Networks 49 (2005) 476–491

www.elsevier.com/locate/comnet

mailto:lulu@cc.gatech.edu


public key cryptographic systems. Examples of

public key algorithms that can be used by portable

devices are RSA [17], Diffie–Hellman [7] and DSA

[15]. Among them, RSA is the most popular public

key cryptosystem and has been widely deployed in
many portable devices to support protocols (e.g.

communication protocols).

Many of the currently available portable de-

vices possess a limited amount of hardware re-

source and computing power. Consequently, the

processing speed attained by implementing public

key cryptographic functions on those devices

could be much slower than those on desktop
computers. Because of this, there have been many

studies on using specially designed hardware and

software approaches to overcome the limited hard-

ware resource and improve the performance of

certain cryptographic functions [10,13,16].

This paper focuses on one of the important

problems in public key cryptosystems—the gener-

ation of large random primes on resource-
constrained devices. Due to the nature of the pro-

cedure for prime generation, which will be dis-

cussed later in the paper, the generation of large

random primes is very time costly. For instance,

the generation of 1024-bit primes, which can corre-

spond to 2048-bit RSA key pairs, may cost several

minutes to accomplish in devices like smart cards.

For some applications, a user may need a higher
security level that requires generating even larger

primes, e.g. 2048-bit primes. In this case, the time

needed for generating 2048-bit random primes is

usually much more.1 One of the reasons contribut-

ing to the low performance of large prime genera-

tion is the hardness of finding efficient primality

testing algorithms. Meanwhile, another reason is

that the existing prime generation algorithms and
the implementations are not sufficiently investi-

gated, particularly for small portable devices.

There have been a number of prime generation

algorithms implemented on small portable devices,

with performances varying widely. Unfortunately,

most implementations simply use any prime gener-

ation algorithm available to them without noticing

the big performance variations among them. As a

result, some of the implementations run for an

unreasonable amount of time. The total time for

key generation can be very long and sometimes

unacceptable, especially when a group of keys
need to be generated or if some low-end tamper

resistant devices are used. In addition, many small

portable devices have limited storage space, partic-

ularly non-persistent storage that is used to store

temporary values. The problem is aggravated by

the fact of having several applications competing

for the limited storage. Naturally, prime genera-

tion algorithms should optimize their storage
requirements, what is not considered in the usual

publicly available prime generation algorithms.

Therefore, it is necessary to optimize the perfor-

mance and storage requirements of prime genera-

tion algorithms for small portable devices.

This paper investigates existing prime generation

algorithms, makes optimizations and compares

their efficiencies in terms of time and memory space
required. Hence, it provides a good reference for

software engineers who implement large prime gen-

erations on small portable devices where resource is

limited. The paper initially discusses one of the

most used ways for prime generation—incremental

search. Then, several optimizations are made to the

incremental search prime generation algorithm.

The study of performances shows that the table
lookup and bit-array algorithms are the most effi-

cient among all the algorithms examined. In addi-

tion, the storage requirements are compared. The

bit array algorithm requires significantly less mem-

ory than the table lookup algorithm and therefore

is the best choice among the algorithms, when both

time and memory efficiencies are considered.

One of the important issues in optimizing incre-
mental search prime generation algorithms is in

choosing a small prime set (SPS) for the sieve pro-

cedure. The paper analyzes the factors that affect

the choices of the optimal SPS sets when generat-

ing different sizes of primes on portable devices

and proposes a method that can predicate those

values instead of exhaustively searching for them.

It is shown by experiments that the efficiencies of
prime generations can be improved by 30% in

the worst case and 200% in the best case by using

optimal SPS sets, compared with using some

1 It could be more than 10 times as much as that for

generating 1024-bit primes.

C. Lu, A.L.M. Dos Santos / Computer Networks 49 (2005) 476–491 477



Download English Version:

https://daneshyari.com/en/article/10340104

Download Persian Version:

https://daneshyari.com/article/10340104

Daneshyari.com

https://daneshyari.com/en/article/10340104
https://daneshyari.com/article/10340104
https://daneshyari.com

