
Protection for software in measuring instruments

Ales Vobornik*

KET, ZCU, Petatricatniku 14, Plzen 30614, Czech Republic

Received 24 May 2004; accepted 28 May 2004

Available online 25 June 2004

Abstract

A protection of measuring instrument control programs and control system data against unauthorized change is necessary for

provision of functionality of entire measuring instrument. Cyclic codes or hashing functions can be used as such protection.

Application of the MD5 hashing function is illustrated on practical example.

D 2004 Elsevier B.V. All rights reserved.

Keywords: Control program; Cyclic code; Digital signature; Hashing function

1. Introduction

A basis of modern measuring instruments is micro-

processor that controls all functions of the instrument.

Thus software of this microprocessor imminently

affects not only functions of the instrument but also

its parameters because measured signals are processed

by means of its program. Hence the software should be

properly protected against accidental and also inten-

tional unauthorized change. A principle of this pro-

tection would be the integrity check—not only for

control program itself but especially for all data, i.e.

correction and calibration coefficients. These data are

preferred to be stored separately, out of control pro-

gram, by reason of easy calibration of the instrument.

The protection against software copying is under-

stood as subsidiary problem because the reengineering

and copying of the measuring instrument is distinc-

tively more complicated a problem than copying a

control program only.

2. Feasible solutions

The integrity check can be performed by many

ways. One of the usually used possibilities is appli-

cation of the cyclic codes—CRC that are utilized at

data transmission. Another, more exacting possibility

is the utilization of hashing functions that are used in

various cryptosystems.

The cyclic codes create an extensive group of the

safety codes. Their advantage is excellent protection

characteristics and easy technical realization. Mathe-

matical calculation is firstly based on dividing of a

polynomial by polynomial. So called ‘‘generator

polynomial’’ takes up the essential position. Its con-

venient choice can affect a probability of software

change detection.

If the generator polynomial will have more than

one term, one changed bit in the block will be always

0920-5489/$ - see front matter D 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.csi.2004.05.005

* Tel.: +42-0377634571; fax: +42-0377634502.

E-mail address: vobornik@ket.zcu.cz (A. Vobornik).

www.elsevier.com/locate/csi

Computer Standards & Interfaces 27 (2005) 101–104



detected. Double change will be detected every time

when the generator polynomial will have a three-

membered coefficient. The odd number of changes

will be detected every time when the generator poly-

nomial will have a type (x + 1) coefficient. A burst of

changes will be detected every time when they will be

shorter than generator polynomial. Otherwise the

change will be detected with probability less than 1.

Thus length of the generator polynomial determines

the length and probability of burst changes detection.

Consequently, the cyclic codes can be highly used to

protect data transmission but actual security of data

integrity would lead to very long and therefore im-

practical code.

The hashing functions were directly developed for

input data copy generation and they are used for

messages protected by electronic signature, for pass-

words protection, etc. The input data for hashing

function is the message (data block) with variable

and practically unrestricted length. The hashing func-

tion output is hashing value with fixed and relatively

short length. The strict safety requirements are im-

posed to the hashing function. First of all this function

must not be reversible. It means that the input data

cannot be obtained from the hashing value. Further

phenomenon of the hashing function is its collision

immunity, which means that it is very difficult to find

two messages with the same hashing value. One can

thus expect that the hashing function will comply with

all the requirements for provision of measuring in-

strument data integrity.

There exist many hashing functions. Most of them

can be classified to MDx, RIPEMD-x and SHA-x

classes.

To the MDx class functions belongs function MD2

that is very slow and obsolete with considerable risk

of collision. Further, to the MDx class functions

belong function MD4, which is very fast but during

its application, collisions were insisted. From aspect

of safety this function is thus unsuitable. The latest

MDx class function is function MD5, which is still

fast but its author [1] does not recommend it from the

point of view of collision possibility. The function

MD5 was yet recently very often used without detec-

tion of any collision.

To the RIPEMD-x class functions belong functions

RIPEMD, RIPEMD-128 and RIPEMD-160. These

functions are more complicated and consequently

significantly slower. The SHA-x class functions, to

which belong functions SHA-0, SHA-1, SHA-256

and SHA-512, are more complicated and conse-

quently slower than the functions of class MDx.

Function RIPEMD-160 and all SHA-x class functions,

with exception of function SHA-0, are considered as

safety.

Comparisons of algorithms relative speeds are in

Table 1. Table 1 illustrates brisk fall of the speed in

accordance with output hashing code rising length.

The control microprocessors used at present in mea-

suring instruments are mainly of 16-bit architecture

but there exist solutions with powerful 8-bit micro-

processors. Further comparison was performed with

microprocessor of class 8051 with clock frequency 12

MHz, which is probably the lowest class of micro-

processor being used in measuring instruments. The

processing speeds and code lengths of corresponding

functions, which also affect possibilities of practical

utilization, are in Table 2. The testing programs were

written and debugged in the C programming lan-

guage. The speed was tested on a block of 32 kB

length.

The cyclic functions can be realized by hardware

but in this case they are realized by software in two

ways. Both ways realize one function but in the

second, faster case the calculation is simplified by

using table. A rise of speed caused by utilization of

the table of values is more apparent for shorter CRC

codes. Slight accelerations for longer CRC codes are

caused especially by the necessity to process numbers

that are longer than the length of microprocessor

word. The CRC codes longer than CRC32, i.e.

CRC64, CRC128, were not tested because additional

processing deceleration, i.e. processing speeds lower

than at function MD5, can be expected.

Table 1

Hashing algorithms relative speeds according to Ref. [5]

Algorithm Code length [b] Relative speed

MD4 128 1

MD5 128 0.68

RIPEMD-128 128 0.39

SHA-1 160 0.28

RIPEMD-160 160 0.24

SHA-256 256 0.12

SHA-512 512 0.03

A. Vobornik / Computer Standards & Interfaces 27 (2005) 101–104102



Download English Version:

https://daneshyari.com/en/article/10340614

Download Persian Version:

https://daneshyari.com/article/10340614

Daneshyari.com

https://daneshyari.com/en/article/10340614
https://daneshyari.com/article/10340614
https://daneshyari.com

