Computers and Electrical Engineering 40 (2014) 1199-1214

Contents lists available at ScienceDirect

Computers and

Electrical Engineering

Computers and Electrical Engineering

journal homepage: www.elsevier.com/locate/compeleceng —

Fast description and synthesis of control-dominant circuits * @ CrossMark

Marc-André Daigneault, Jean Pierre David *

Department of Electrical Engineering, Ecole Polytechnique de Montreal, Montreal, Canada

ARTICLE INFO ABSTRACT
Article history: General purpose processors, graphics processing units (GPUs) and field-programmable
Available online 22 March 2014 gate-arrays (FPGAs) compete and collaborate to offer ever increasing performances. Never-

theless, despite fruitful decades of research, FPGA are still a lot more difficult to exploit
than processor-based approaches. It is today possible to automatically map C/C++/SystemC
algorithms into circuits. However, exploiting fine grain parallelism for control dominant
applications is still reserved to highly specialized people in hardware design. This paper
presents the application of our synchronized-transfer-level hardware design methodology
to the implementation of pipelined floating point operators. The methodology builds on a
hardware description language for which the designer manages dynamic connections
between data token sources and sinks. A compiler automates the generation and the opti-
mization of the synchronization logic, whose low-level complexity is thus hidden to the
designer. Applied to the design of a floating-point matrix multiplication hardware acceler-
ator, the proposed methodology leads to similar computing performances than the dedi-
cated designs reported in the literature but within shorter design times (hours instead of
days), simpler source code and no need for advanced hardware design skills.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A famous debate between Gene Amdahl and Daniel Slotnick on the feasability of parallel computing dates back to as far as
1967 [1,2]. Nowadays, as the performance of single-threaded processors have stopped following Moore’s Law, multi-core
processors have become a commodity, and the spectrum of high-performance parallel computing devices has never been
so colourful. Initially aiming at delivering jaw dropping 3D graphics, the Graphics Processing Units (GPUs) present in
state-of-the-art video cards are increasingly used in the most advanced scientific applications, offering performances in
the order of teraflops [3]. Field-Programmable Gate-Arrays (FPGAs) can also leverage on the billions of transistors that are
made available through state of the art integrated circuit (IC) fabrication processes, and are still riding on - what’s left of
- Moore’s Law. Having evolved from glue-logic to processing devices of their own, modern high-end FPGAs include hundreds
of hard DSP and RAM memory blocks, tens of thousands of registers, sometimes hard-processors, and have thus gradually
narrowed the gap separating their performance with those of ASICs [4]. Unlike the ASIC however, an FPGA can be
reconfigured in a matter of minutes to implement any hardware design (fitting the device), possibly including configurable
processors and their programs.

Recently, the Basic Linear Algebra Subroutines (BLAS) library has been implemented on three different platforms [5]: an
Intel Core 2 Duo E8500 processor, an Nvidia Tesla C1060 GPU, and a Virtex5 FPGA (inside a BEE3 platform). Results show that

* Reviews processed and recommended for publication to Editor-in-Chief by Associate Editor Dr. Rene Cumplido.
* Corresponding author.
E-mail address: JPDavid@polymtl.ca (J.P. David).

http://dx.doi.org/10.1016/j.compeleceng.2014.02.011
0045-7906/© 2014 Elsevier Ltd. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2014.02.011&domain=pdf
http://dx.doi.org/10.1016/j.compeleceng.2014.02.011
mailto:JPDavid@polymtl.ca
http://dx.doi.org/10.1016/j.compeleceng.2014.02.011
http://www.sciencedirect.com/science/journal/00457906
http://www.elsevier.com/locate/compeleceng

1200 M.-A. Daigneault, J.P. David / Computers and Electrical Engineering 40 (2014) 1199-1214

the FPGA implementation provides the best energy efficiency in terms of GFLOPS per Watt, while the GPU is the most power
hungry. In the field of matrix multiplication, high-performance GPU implementations will deliver as much as 393 GFLOPS
[6]. The FPGA implementations of matrix multiplication proposed in [7-13] can deliver up to 29.8 GFLOPS. As the world goes
more mobile and becomes more conscious of its impact on the environment, energy efficiency can be a strong driving force
to the adoption of FPGAs for processing and co-processing units [14]. Nevertheless, while concurrent programming is
becoming the de-facto approach to fully-exploit the potential of state of the art programmable ICs, programming and debug-
ging hardware remains inherently harder than software.

Despite important advances in the field of high-level C-synthesis, most hardware designs are still described with Register-
Transfer-Level (RTL) languages such as VHDL and Verilog. However, such abstraction level is simply too low to handle the
millions and billions of transistors available in modern ICs. In this work, we consider a beyond-RTL abstraction level that
considers assignments as transfers between data-synchronized sources and sinks, instead of simple register transfers. Using
implicit predefined synchronization interfaces similar to Xilinx’s AXI4-Stream and Altera’s Avalon Streaming interfaces, such
Synchronized-Transfer-Level (STL) abstraction frees the programmer from the tedious task of handling and specifying low-
level synchronization control logic. Data transfers occur between connected source and sink when both are ready to
send/receive.

Our hardware description language (HDL) builds on the CASM language [15], which proposes that Finite State Machines
(FSMs) handle dynamic connections between data token sources and sinks. The proposed STL abstraction adds a constraint
programming paradigm to allow the specification of logical rules constraining the authorization of data transfers over dif-
ferent connections [16]. Thanks to those authorization rules, it is possible to describe concisely behaviors such as synchro-
nization, arbitration and constrained scheduling between concurrent connections. Nevertheless, the dynamic connection of
interfaces supporting back-pressure (ready-to-receive signals) is confronted to the pitfall of induced combinational loops,
resulting in unpredictable behavior. The proposed methodology addresses this issue too.

This paper illustrates how our STL description and synthesis methodology can help a designer to quickly implement the
matrix multiplication application, which involves the design of a state-of-the-art floating-point accumulator that relies on
the delayed-buffering (DB) method [17]. At the featured abstraction level, such design requires only a few state machines
handling constrained connections between data-driven operators. Most of the hardware complexity is implicit and automat-
ically handled by our compiler. The number of transfers that are authorized at each clock cycle is also optimized, taking into
account the dependencies between the transfers and the constraints specified by the designer. The compiler is particularly
helpful at optimizing cyclic dependencies, preventing the generation of combinatorial loops. The full description of our
pipelined implementation of the matrix multiplication circuit is simple enough to be implemented in hours instead of days,
without any advanced knowledge of hardware design. Nevertheless, the performances obtained are similar to the ones
reported by experts for the dedicated implementations already cited.

The paper is organized as follows: Section 2 discusses related work in the field of high level hardware synthesis. Section 3
presents the main features of the STL design methodology such as predefined synchronization protocols and interfaces,
transfer authorization rules, and the handling of combinational loops. Section 4 presents the application of the featured
methodology to the design of a floating-point matrix multiplication hardware accelerator, supporting matrix sizes up to
1024 x 1024, and of a high-performance floating-point accumulator. Section 5 presents and discusses the results obtained
for the FPGA implementation targeting both Virtex-V and Stratix-III devices. Section 6 concludes this work.

2. Related work

Proposing useful abstractions for beyond-RTL hardware description languages remains an open challenge. The design of
modern digital hardware applications involves the interconnection of hundreds and more components, ranging from simple
registers to complex multi-core devices. Despite decades of research and development, C/C++/SystemC high-level synthesis,
while most beneficial to system-level design and verification and for fast prototyping [18-20], has yet to deliver efficient
hardware synthesis that could replace RTL methodologies [21]. For instance, these approaches work well when the control
flow of the application is statically determined, but are less appropriate to efficiently support and handle highly data-depen-
dent control-flows. It has also been pointed-out that the C language may not be well suited for the description of concurrent
hardware designs [22]. Some issues such as the ability to describe structure are considerably alleviated with support for Sys-
temC, but C/C++ remains highly sequential and automatic parallelism extraction has its limits, pointer analysis and aliasing
being an notable one.

The use of logical implication rules to constrain data transfer authorizations over synchronized connections in our STL
methodology is somehow akin to the use of atomic guarded actions that is proposed in BlueSpec SystemVerilog [23]. BlueSpec
features operation-centric semantics [24], and lets the user specify behaviors as a collection of atomic guarded actions, re-
ferred to as rules. When a predicate is true, all the actions guarded by that predicate are executed concurrently. It is also pos-
sible to compose these rules to produce new behaviors, such that two sets of guarded actions can execute atomically, logically
one after the other, when both predicates are simultaneously true. Yet, the concept of constraint rule remains different from
that of a guarded action rule in the sense that the former represents necessary rules, while the later represent necessary and
sufficient rules for an action (transfer) to happen. At the application level, the work in [7] presents the design of a matrix mul-
tiplication hardware accelerator using BlueSpec high-level synthesis HDL. The resulting FPGA implementation on a Virtex-II



Download English Version:

https://daneshyari.com/en/article/10341003

Download Persian Version:

https://daneshyari.com/article/10341003

Daneshyari.com


https://daneshyari.com/en/article/10341003
https://daneshyari.com/article/10341003
https://daneshyari.com/

