
DFRWS USA 2016 d Proceedings of the 16th Annual USA Digital Forensics Research Conference

Fingerprinting Android packaging: Generating DNAs for
malware detection

ElMouatez Billah Karbab*, Mourad Debbabi, Djedjiga Mouheb
Computer Security Laboratory, Concordia University & NCFTA-Canada, Montreal, Quebec, Canada

Keywords:
Fingerprinting
Malware
Mobile
Android
Fuzzy hashing
Detection
Family attribution

a b s t r a c t

Android's market experienced exponential popularity during the last few years. This
blazing growth has, unfortunately, opened the door to thousands of malicious applications
targeting Android devices everyday. Moreover, with the increasing sophistication of to-
day's malware, the use of traditional hashing techniques for Android malware finger-
printing becomes defenseless against polymorphic malicious applications. Inspired by
fuzzy hashing techniques, we propose, in this paper, a novel and comprehensive finger-
printing approach for Android packaging APK. The proposed fingerprint captures, not only
the binary features of the APK file, but also the underlying structure of the app. Further-
more, we leverage this fingerprinting technique to build ROAR, an automatic system for
Android malware detection and family attribution. Our experiments show that the pro-
posed fingerprint and the ROAR system achieve a precision of 95%.
© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In recent years, we have witnessed a phenomenal
popularity and growth of Android devices. It is estimated
that 2 billion devices are currently powered by Android OS
(Ericsson, 2013). This trend is expected to continue to
reach more than 5.6 billion devices by 2019 (Ericsson,
2013). Due to their proliferation and ubiquitousness,
Android devices have become a tempting target for cyber
criminals. According to a Cisco report (Cisco, 2014), mobile
malware mostly targets Android devices. In this setting,
the need to develop effective and accurate forensics
methods, techniques and tools for the detection and
analysis of Android malware becomes a desideratum.

To address the malware variation flood, multiple
defence mechanisms have been proposed by the anti-mo-
bile-malware industry, with signature-based detection being
themost adopted technique. The latter usesmalware digest
or signature to match against mobile applications in order

to detect any malicious code. Traditional cryptographic
hashing algorithms such as SHA1 and MD5 have been
widely adopted for generating malware signatures. Cryp-
tographic hashing methods have the advantage of being
simple and fast. They are, however, highly sensitive to even
small changes, which makes these methods defenseless
against malware variations. Moreover, despite its effec-
tiveness, signature-based detection could be easily defea-
ted by new malicious applications with only tiny
modifications as is the case with polymorphic attacks.

To overcome the drawbacks of cryptographic hashing, a
new technique, namely fuzzy hashing, has emerged in the
literature. The concept of fuzzy hashing was first intro-
duced as ssdeep (Kornblum, 2006) in rsync checksum
(Tridgell and Mackerras). The main advantage of this
technique over cryptographic hashing lies in its tolerance to
changes. Thanks to this important property, fuzzy hashing
has been widely leveraged to detect Web-based document
duplication (Figuerola et al., 2011). In cyber security, fuzzy
hashing has been mainly embraced in malware finger-
printing. For instance, Virus Total has been using the ssdeep
fuzzy hashing for malware fingerprinting since 2012. There* Corresponding author.

E-mail address: e_karbab@encs.concordia.ca (E.B. Karbab).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2016.04.013
1742-2876/© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 18 (2016) S33eS45

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:e_karbab@encs.concordia.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2016.04.013&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.04.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2016.04.013
http://dx.doi.org/10.1016/j.diin.2016.04.013


are several other attempts, such as mvHash-B (Breitinger
et al., 2013), dcfldd (DCFL, 2016), sdhash (sdhash 2016;
Roussev), and mrshv2 (Breitinger and Baier, 2013), to
apply fuzzy hashing in multiple applications. In the context
of malware detection, it consists of two steps: i) malware
binary digest computation, ii) matching the digest against
other malware samples.

Despite its effectiveness compared to cryptographic
hashing, fuzzy hashing technique suffers from some lim-
itations. First, it ignores the underneath structure and
semantics of the malicious package. Second, fuzzy hashing
suffers from its single fingerprint bounded with a
maximum size (e.g., ssdeep (Roussev, 2010)), thus pre-
venting packages with different sizes and features to be
effectively compared. Other drawbacks of fuzzy hashing
related to specific algorithms are presented in (Li et al.,
2015) concerning mvHash-B fuzzy hash algorithm
(Breitinger et al., 2013). Furthermore, the compressed
nature of Android APK package makes the repacking of
malicious apps an easy task. Moreover, the increasing
number of Android app stores and the lack of security
verification in some stores increase the chance of attackers
to deploy malicious applications in multiple stores.
Another issue is related to native libraries (Wang and
Shieh, 2015), specifically at the level of Java objects,
executed on top of Dalvikmachine. It has been shown that
these libraries are exploited by a significant number of
Android malware, such as the well-known sophisticated
DroidKungFu malware and its many variations (Zhou and
Jiang, 2012). Not analyzing the native library would
make the distinction between its variations a very chal-
lenging task.

Our objectives are to: i) Develop a more accurate, yet
broad, fuzzy fingerprinting technique for Android OS mal-
ware. The proposed fingerprint relies on a customized
fuzzy hashing technique that addresses the previous limi-
tations. ii) Design and implement a framework for Android
malware detection and family attribution on top of the
developed fuzzy fingerprint. To this end, we propose APK-
DNA, a fuzzy fingerprint that captures both the structure
and the semantics of the APK file using most Android APK
features. This fingerprint covers: i) the underneath Android
app structure, including both Dalvik machine byte-code ii)
the meta-data of the Android app. Our empirical results
indicate that our fingerprinting approach is highly robust to
app changes and accurate in terms of fingerprint compu-
tation and matching.

Moreover, we build ROAR, an automatic framework for
Android malware detection, using the proposed APK-DNA.
The goal is to generate fingerprints for known Android
malicious apps, and then detect new malware variations
using similarity computing. In ROAR framework, we pro-
pose two different approaches for malware detection: i)
family-fingerprinting, and ii) peer-matching. In addition to
malware detection, we aim to attribute the family lineage
of the mobile malware. To this end, ROAR attributes a
similarity score to each possible variation in the same
malware family. We evaluate APK-DNA and ROAR using
real malware samples from the Android Malware Genome
Project (Android Malware Genome Project, 2015; Zhou
and Jiang, 2012). We experiment with multiple Android

malware families. Our evaluation demonstrates that
ROAR is highly accurate compared to state of-the-art
approaches.

This paper makes the following contributions:

� We propose a novel and rather comprehensive finger-
printing technique for Android application packages
(APK) based on fuzzy hashing. The proposed fingerprint
considers not only the binary format of APK but also its
structure and semantics.

� We design and implement ROAR, a framework that le-
verages the proposed fingerprinting technique for
Android malware detection, following two different
approaches, namely peer-matching and family finger-
print. In addition, ROAR is able to detect malware vari-
ations and attribute the family of the detected malware.

� We evaluate ROAR on 928 Android malware samples
from (Android Malware Genome Project, 2015; Zhou
and Jiang, 2012) dataset. The evaluation results
demonstrate the high accuracy of ROAR in terms of both
malware detection and family attribution.

The remainder of this paper is organized as follows:
Section Approach overview presents an overview of the
proposed approach. Section APK-DNA fingerprint is dedi-
cated to the APK-DNA fingerprinting. Section ROAR
framework presents the ROAR framework. Section
Experimental results details our experimental results.
Section Limitations and future work discusses the limita-
tions of the proposed approach together with some ideas
on future research. The related work is reported in Section
Related work. Section Conclusion contains some
concluding remarks.

Approach Overview

Current fuzzy fingerprints such as ssdeep are computed
against the app binary as a whole, which makes them
ineffective for detecting malicious app variations. This
problem gets even worst in case of Android OS because of
the structure of apps packaging, which contains not only
the actual compiled code but also other files such as media
ones. To overcome this limitation, we propose an effective
and broad fuzzy fingerprint that captures, not only binary
features, but also the underneath structure and semantics
of the APK package.

Accordingly, our approach for computing Android app
fingerprints relies on decomposing the actual APK file into
different content categories. For each category, we
compute a customized fuzzy hash (sub-fingerprint). Note
that for some categories, for instance Dex file, the appli-
cation of the customized fuzzy hashing on the whole
category content does not capture the structure of the
underlying category. In this case, we apply fuzzy hashing
against a selected N-grams of the category content. In our
context, we use byte n-grams on binary files and instruction
n-grams on assembly files. Furthermore, a best practice for
malware fingerprinting is to increase the entropy of the
app package content (Masud et al., 2007). To this end, we
compress each category content before computing the

E.B. Karbab et al. / Digital Investigation 18 (2016) S33eS45S34



Download English Version:

https://daneshyari.com/en/article/10341443

Download Persian Version:

https://daneshyari.com/article/10341443

Daneshyari.com

https://daneshyari.com/en/article/10341443
https://daneshyari.com/article/10341443
https://daneshyari.com

