
DFRWS USA 2016 d Proceedings of the 16th Annual USA Digital Forensics Research Conference

Database image content explorer: Carving data that does not
officially exist

James Wagner a, *, Alexander Rasin a, Jonathan Grier b

a DePaul University, Chicago, IL, USA
b Grier Forensics, USA

Keywords:
Database forensics
File carving
Data recovery
Memory analysis
Stochastic analysis

a b s t r a c t

When a file is deleted, the storage it occupies is de-allocated but the contents of the file are
not erased. An extensive selection of file carving tools and techniques is available to
forensic analysts e and yet existing file carving techniques cannot recover database stor-
age because all database storage engines use proprietary and unique storage format.
Database systems are widely used to store and process data e both on a large scale (e.g.,
enterprise networks) and for personal use (e.g., SQLite in mobile devices or Firefox). For
some databases, users can purchase specialized recovery tools capable of discovering valid
rows in storage and yet there are no tools that can recover deleted rows or make analysts
aware of the “unseen” database content.
Deletion is just one of the many operations that create de-allocated data in database
storage. We use our Database Image Content Explorer tool, based on a universal database
storage model, to recover a variety of phantom data: a) data that was actually deleted by a
user, b) data that is marked as deleted, but was never explicitly deleted by any user and c)
data that is not marked as deleted and had been de-allocated without anyone's knowledge.
Data persists in active database tables, in memory, in auxiliary structures or in discarded
pages. Strikingly, our tool can even recover data from inserts that were canceled, and thus
never officially existed in a data table, which may be of immeasurable value to investi-
gation of financial crimes. In this paper, we describe many recoverable database storage
artifacts, investigate survival of data and empirically demonstrate across different data-
bases what our universal, multi-database tool can recover.
© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Deleted files can be restored from disk, even if the
storage is corrupted. File carving techniques look for data
patterns representative of particular file type and can
effectively restore a destroyed file. For numerous reasons
(e.g., recovery, query optimization), databases hold a lot of
the valuable data and yet standard file carving techniques
do not apply to database files. Work byWagner et al. (2015)

described that, primarily due to the unique storage as-
sumptions, database carving solutions must take an
entirely new approach compared to traditional solutions.

Our motivating philosophy is that a comprehensive
analytic tool should recover everything from all databases.
Beyond simple recovery, forensic analysts will benefit from
seeing the “hidden” content, including artifacts whose ex-
istence is a mystery. In this paper, we deconstruct database
storage and present techniques for recovering database
content that does not officially exist. We use our Database
Image Content Explorer (DICE) tool to restore deleted and
de-allocated data across a variety of different Database
Management Systems (DBMSes).

* Corresponding author.
E-mail addresses: jwagne32@mail.depaul.edu (J. Wagner), arasin@

cdm.depaul.edu (A. Rasin), jdgrier@grierforensics.com (J. Grier).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2016.04.015
1742-2876/© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Digital Investigation 18 (2016) S97eS107

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jwagne32@mail.depaul.edu
mailto:arasin@cdm.depaul.edu
mailto:arasin@cdm.depaul.edu
mailto:jdgrier@grierforensics.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2016.04.015&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.04.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2016.04.015
http://dx.doi.org/10.1016/j.diin.2016.04.015


Our contributions

We present forensic analysis and recovery techniques
tailored to de-allocated database storage. We define stor-
age strategies of many relational databases, with in-depth
analysis of what happens “under the hood” of a database:

� We define similarities and differences in how different
databases handle deletion, explaining why deleted
values often remain recoverable for a long duration of
time.

� We also show how non-delete user actions create
deleted values in a database.

� We explain why databases create and keep many addi-
tional copies of the data. Copies that are often created
without user's knowledge and sometimes without any
human action at all.

� We demonstrate how to recover a surprising amount of
content from auxiliary structures used in databases.

� We prove the value of our tool, recovering nonexistent
data (de-allocated and/or surviving past expectations)
by testing DICE against many DBMSes.

This paper is structured as follows: Section Background
starts with a review of different database storage ele-
ments and the side-effects of caching, Section The life cycle
of a row deals with row recovery, Section The life cycle of a
page addresses entire “lost” pages and Section The life
cycle of a value traces different places where table col-
umns can hide.

A thorough evaluationwith different DBMSes in Section
Experiments shows what can be recovered. Our tests show
that DICE can recover 40e100% of deleted rows,14% of rows
overwritten by updates, “invisible” column values in
auxiliary structures, and 100% of canceled inserts. We
believe that the power of seeing forgotten or non-existent
data and transactions, and its potential role in investiga-
tion of data-centric crimes, such as embezzlement and
fraud, is self-evident. For example, suppose that company X
is suspected of falsifying financial information in prepara-
tion for an audit. Investigator Y is would want to determine
if some financial transactions in their Oracle database have
been deleted and, if so, restore the evidence of falsification.
Section Related work summarizes related work in the area
and Section Conclusions and future work points towards
some of the promising future directions.

Background

Page structure

Relational database pages share the same component
structure: the header, the row directory and the row data.
Other database-specific components also exist, e.g., Post-
greSQL pages have a “special space” for index access. The
page header stores variables such as unique page identifier
or structure identifier e this component is always located at
the beginning of the page. The row directory tracks indi-
vidual row addresses within the page, maintained when
rows are modified. The row directory is positioned either

between the page header and the row data or at the end of
the page. Row data structure contains the actual page
content along with some additional overhead. Fig. 1 shows
how these structures interact within a page.

Some of the parameters used in this paper are sum-
marized in Table 1 for the six DBMSes used in Section
Experiments. DICE supports many more databases e we
only use six different databases due to space consider-
ations. All databases use a unique page identifier, which
distinguishes page types. All databases except PostgreSQL
store a structure identifier in the header, e.g., table supplier
or an IndexEmpID. Structure information can be recovered
from database system tables (see Section System tables);
PostgreSQL and MySQL use a dedicated file for each data-
base structure and thus establish a more direct link be-
tween pages and structure identifier.

PostgreSQL, SQLite, Oracle, and DB2 add row directory
addresses from top to bottom, with row insertion from
bottom to top. SQL Server and MySQL instead add row
directory addresses from bottom to top, with row data
appended from top to bottom. The order of adding newly
inserted rows can affect the order in which deleted values
are overwritten. PostgreSQL, SQLite, SQL Server, andMySQL
create a row identifier e an internal column created by the
database that is sometimes accessible to users. PostgreSQL,
SQLite, Oracle, and SQL Server explicitly store the column
count for each row, while DB2 and MySQL do not. Post-
greSQL, SQLite, Oracle, and MySQL store the size of each
string in the row. SQL Server and DB2 instead create a
column directory with pointers to each string column.
Oracle percent used parameter controls page storage utili-
zation e e.g., setting percent used to 50% means that once a
page is half-full, new inserts will start replacing deleted
rows. In other DBMSes, users have less control over deleted
data fragmentation in a page. SQL Server and DB2 mitigate
fragmentation by using special storage to shuffle rows and
accommodate newly inserted rows in a page (auto row
reclamation in Table 1). A more comprehensive list of pa-
rameters and a description of how to reconstruct pages is
described by Wagner et al. (2015).

•Page Header
•Row Directory

•Row Data

•Other Structures

Row4: 4, Mark, Boston
Row3: 3, Mary, Dallas
Row2: 2, Jane, Chicago
Row1: 1, John, Boston

Row1 Address
Row2 Address
Row3 Address
Row4 Address

*Table Data
Tbl=Customer

Free space, 
etc.

20%

80%

Fig. 1. An overview of database page structure.

J. Wagner et al. / Digital Investigation 18 (2016) S97eS107S98



Download English Version:

https://daneshyari.com/en/article/10341452

Download Persian Version:

https://daneshyari.com/article/10341452

Daneshyari.com

https://daneshyari.com/en/article/10341452
https://daneshyari.com/article/10341452
https://daneshyari.com

