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a b s t r a c t

Live Memory analysis on the Linux platform has traditionally been difficult to perform.
Memory analysis requires precise knowledge of struct layout information in memory,
usually obtained through debugging symbols generated at compile time. The Linux kernel
is however, highly configurable, implying that debugging information is rarely applicable
to systems other than the ones that generated it. For incident response applications,
obtaining the relevant debugging information is currently a slow and manual process,
limiting its usefulness in rapid triaging. We have developed a tool dubbed, the Layout
Expert which is able to calculate memory layout of critical kernel structures at runtime on
the target system without requiring extra tools, such as the compiler tool-chain to be pre-
installed. Our approach specifically addresses the need to adapt the generated profile to
customized Linux kernels e an important first step towards a general version agnostic
system. Our system is completely self sufficient and allows a live analysis tool to operate
automatically on the target system. The layout expert operates in two phases: First it pre-
parses the kernel source code into a preprocessor AST (Pre-AST) which is trimmed and
stored as a data file in the analysis tool's distribution. When running on the target system,
the running system configuration is used to resolve the Pre-AST into a C-AST, and com-
bined with a pre-calculated layout model. The result is a running system specific profile
with precise struct layout information. We evaluate the effectiveness of the Layout Expert
in producing profiles for analysis of two very differently configured kernels. The produced
profiles can be used to analyze the live memory through the /proc/kcore device without
resorting to local or remote compilers. We finally consider future applications of this
technique, such as memory acquisition.
© 2016 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
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Introduction

In recent times, Memory analysis has been used effec-
tively in the wider context of digital forensics, and malware
detection (Ligh et al., 2014). In essence, memory analysis
strives to make sense of a computer's memory image e an
exact copy of the physical memory used by a running
system. As the size of physical memory increases, especially
on large servers, memory analysis based triaging

techniques are becoming more important (Moser and
Cohen, 2013).

At first look, physical memory might appear as a large
amorphous and unstructured collection of data. In fact,
physical memory is used by the running software to store
program state in a highly structured manner. The pro-
grammer employs logical constructs such as C structs to
collect related data into logical units, representing abstract
data types. The compiler than ensures that this struct is laid
out in memory in a consistent way, and generates code to
access various members of the struct according to this
layout.* Corresponding author.
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In order to successfully extract high level information
from a memory image, one must extract and interpret the
abstract struct objects that the program handles from the
amorphous physical memory. In order to do this, one must
have an accurate model of the physical layout of the structs
and their individual member's data types.

Earlier memory analysis solutions relied on hand con-
structed layoutmodels for each struct, obtained by trial and
error (Schuster and Andreas, 2007). However, struct lay-
outs change frequently between released versions (Cohen,
2015b), and the large number of structs of interest makes
such maintenance difficult.

For open source operating systems, one might be
tempted to examine the source code and from the source
code, theorize the precise memory layout for each struct.
However (as explained in detail in Section Layout model),
such an analysis is not practical without intimate knowl-
edge of the compiler's layout model. In practice there are
many edge cases which are difficult to predict: For example,
the compiler may add padding to ensure alignment of
various struct members under different conditions.

In order to support debugging tools, which must also
extract meaningful information from the program's mem-
ory, compilers typically emit the layout models for each
struct used in a program into some kind of debugging
stream, for example a PDB file, or DWARF streams (DWARF
Debugging Information Format Committee, 2010).

The Volatility Memory analysis Framework (The
Volatility Foundation, 2014) was the first open source
memory analysis framework able to utilize information
derived from debugging streams in order to analyze
memory images from multiple versions of an operating
system. In the Volatility framework, debugging information
is converted into a profile specific to a particular version of
the operating system. These profiles are embedded inside
the tool and allow the user to specify which version of the
operating system the image originated from.

On Microsoft Windows systems, debugging symbols are
stored in external PDB files which may be downloaded
from a central symbol server on demand (Okolica and
Peterson, 2010). The Rekall memory analysis framework
(The Rekall Team, 2014) is able to download debugging
symbols for unknown kernels directly from the Microsoft
debugging server. This feature is useful when operating in
live mode since Rekall can parse the PDB files directly into
profiles which are used to analyze the running system.

Unfortunately, memory analysis on Linux systems pre-
sents some practical challenges. UnlikeWindows, the Linux
Kernel is typically not compiled with debugging informa-
tion (such as DWARF streams), nor is debugging informa-
tion typically available on demand from a debug server. In
order to obtain debugging information, one must recom-
pile the kernel, or some part of the kernel (e.g. a kernel
module) specifically with debug flags enabled. On a Debian
based system, this also requires that a linux-header package
be installed, containing kernel header files as well as
important files that were generated during the kernel
compilation step (e.g. Modules.symvers file) before a kernel
module can be built (Hertzog and Mas, 2014). In practice,
the kernel-header package for a custom compiled kernel is
often not available or was never even created in the first

place. At best, incident responders must scramble to
identify the correct kernel-header package for the running
kernel on the target system and hope that it matches.

Another complication is the high level of configurability
of the Linux kernel. During the kernel build process, users
may specify a large number of configuration options through
the kernel's configuration system. These options affect the
kernel build process by defining a large number of C pre-
processing macros.

The Linux kernel source uses preprocessing macros
heavily to customize the operation of the kernel itselfe and
in particular the kernel tends to include certain fields into
critical structs only if certain functionality is enabled by the
user. For example consider the code in Fig. 1 which shows
the definition of task_struct e a critical struct maintaining
information about running processes.

As can be seen, some of the struct members are only
included if certain configuration parameters are set. For
example, the sched_task_group pointer only exists when
the kernel is compiled with support for task group sched-
uling e an optional feature of the Linux kernel. Similarly
CONFIG_SMP controls the inclusion of several fields used by
multiprocessing systems.

When the compiler generates the abstract struct layout
model, it must allocate a position for every struct member
in memory, sufficient to accommodate the size of the
member, its alignment requirements and the alignment of
members around it. Clearly if certain fields are not included
in the struct definition (e.g. if the feature they implement is
not chosen by the user), the compiler will not reserve any
space for them, and therefore struct members that appear
later in the struct definition will be located at different
positions in memory.

The main problem that memory analysis tools
encounter when parsing the Linux kernel's memory, is that
the configuration of the kernel controls the resulting kernel
structures' layout model, but this configuration is not
constant. Since Linux users and distributions are free to
reconfigure and recompile their kernels at any time, each
specific kernel used in a given memory image can have
vastly different configuration and therefore layouts (This is
contrasted with commercial operating systems, such as
Windows or OSX, where only a small number of officially
released versions are found in the wild).

One solution to this problem is to maintain a large re-
pository of common kernel configurations. The Secondlook
product (Secondlook, 2015) maintain a large repository of
profiles for every release of major distributions (e.g.
Ubuntu, Redhat etc). Although this repository is large
(supposedly over 14,000 profiles), if the user has recom-
piled the kernel and changed some configuration options
themselves, the correct profile will not be found in the
repository. A complete repository will have to account for
every combination of configuration options and would
therefore be impractically large.

A different approach, as taken by somememory analysis
frameworks (The Rekall Team, 2014; The Volatility
Foundation, 2014) requires the user to specifically build a
profile for each target kernel in advance prior to analysis.
The usual procedure is to obtain the kernel-headers pack-
age and use the target kernel's configuration to compile a
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