
DFRWS 2016 Europe d Proceedings of the Third Annual DFRWS Europe

Pool tag quick scanning for windows memory analysis

Joe T. Sylve a, b, *, Vico Marziale a, Golden G. Richard III b

a Blackbag Technologies, Inc, San Jose, CA, USA
b Department of Computer Science, University of New Orleans, New Orleans, LA, USA

Keywords:
Microsoft windows
Memory analysis
Memory forensics
Live forensics
Pool tag scanning
Pool scanning
Incident response

a b s t r a c t

Pool tag scanning is a process commonly used in memory analysis in order to locate kernel
object allocations, enabling investigators to discover evidence of artifacts that may have
been freed or otherwise maliciously hidden from the operating system. The fastest current
scanning techniques require an exhaustive search of physical memory, a process that has a
linear time complexity over physical memory size. We propose a novel technique that we
are calling “pool tag quick scanning” that is able to reduce the scanning space by 1e2
orders of magnitude, resulting in much faster discovery of targeted kernel data structures,
while maintaining a high degree of accuracy.
© 2016 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The Microsoft Windows operating system maintains
several kernel mode heaps, known as “system memory
pools” which store operating system kernel object alloca-
tions, e.g., _EPROCESS process descriptors, _FILE structures,
etc. Since most pool allocations start with a _POOL_-
HEADER structure, a technique commonly known as “pool
tag scanning” can be used to identify key OS-related
forensic artifacts in physical memory images. Pool tag
scanning was originally used for discovering structures
associated with processes and threads, but is now widely
used to target many kinds of data structures. It is particu-
larly effective in detecting direct kernel object manipula-
tion (DKOM), which is commonly used by malware to hide
processes by removing references to the _EPROCESS allo-
cation from other data structures. It can also be used to
detect freed allocations that have not yet been overwritten.
Yet another use for pool scanning is the recovery of kernel
structures for which no better method has been developed,
such as many structures associated with the Windows GUI

subsystem. While pool tag scanning is effective, the most
efficient existing techniques require a time consuming,
exhaustive search of all physical memory to find structures
of interest.

While current methods of pool scanning could be
considered fast enough to analyze the majority of today's
commodity systems, the process is linear over RAM size
and sizes are quickly increasing. Windows 10 was recently
released and supports physical RAM sizes of up to 2 TB for
desktop systems. Modern versions of Windows Server
support twice as much (Microsoft (2015b)).

As case loads increase, investigators often turn to batch
processing of evidence. Reductions in the processing time
of individual evidence sources can drastically reduce the
overall analysis time.

During incident response scenarios time is also a critical
factor and analysis is often done remotely over a network
connection. A significant reduction in scanning time and
network bandwidth requirements can make individual
investigators better able to quickly detect and react to
malicious behavior on a network. A fast enough scanning
technique may also be useful for real-time detection of
malware or other threats.

This paper presents a novel technique for pool tag
scanning that limits scanning to only those physical
memory pages that are identified as being a part of a

* Corresponding author.
E-mail addresses: joe.sylve@gmail.com (J.T. Sylve), vicodark@gmail.

com (V. Marziale), golden@cs.uno.edu (G.G. Richard).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2016.01.005
1742-2876/© 2016 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Digital Investigation 16 (2016) S25eS32

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:joe.sylve@gmail.com
mailto:vicodark@gmail.com
mailto:vicodark@gmail.com
mailto:golden@cs.uno.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2016.01.005&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.01.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2016.01.005
http://dx.doi.org/10.1016/j.diin.2016.01.005


system memory pool allocation. This technique greatly
reduces scanning time by reducing the scanning space from
the size of physical memory to the size of the allocated pool
pages, which can easily be several orders of magnitude
smaller. The method also significantly reduces the band-
width requirements of preforming live memory analysis on
a target system over a network.

Related work

Pool tag scanning

Schuster (2006) first introduced techniques for search-
ing an entire image of physical memory for signatures
associated with pool allocations to discover both currently
active and freed (but not yet overwritten) kernel data
structures, a technique now commonly referred to as “pool
tag scanning” or just “pool scanning”. Schuster (2008)
showed that more than 90% of this information can often
be retrieved even 24 h after process termination under
optimum conditions. The two major open source memory
analysis frameworks, Volatility1 and Rekall2 currently
implement Schuster's scanning techniques.

Ligh (2013) introduced the -V and –virtual flags to
Volatility. These flags enable pool tag scanning inside of the
kernel's virtual address space, by performing an exhaustive
search of the kernel's entire virtual address space. Since
Volatility has no a priorimechanism for determining which
pages are allocated, this approach requires page table
lookups and address translation for every page in the ker-
nel's address space, a process that reduces the amount of
memory scanned, but is generally much slower than an
exhaustive search of physical memory due to the lookup
and translation overhead.

Cohen (2015) showed that Windows 10 obfuscates
structures that are important to pool scanning with a value
that is based off of the virtual address of the pool allocation.
This makes pool scanning on physical memory ineffective
against Windows 10 targets and thus requires a much
slower exhaustive search of the kernel's virtual address
space.

Kernel symbol lookups

Schreiber first described the internal structure of
Microsoft program database (PDB) files as well as a meth-
odology to look up and parse debug symbols (Schreiber,
2001, pp. 70e92).

Okolica and Peterson (2010) introduced the idea of
using the debug information embedded in Microsoft's
program database (PDB) files in a memory analysis tool to
calculate symbol addresses in an arbitrary memory dump
for any of the family of Windows NT operating systems.

Cohen and Metz (2014) introduced the functionality to
parse PDB files and calculate kernel symbol addresses into
Rekall.

Memory pools

The Windows kernel maintains several dynamically-
sized memory pools, or heaps, that most kernel-mode
components use to allocate system memory. The non-
paged pool consists of ranges of system virtual addresses
that are guaranteed to reside in physical memory at all
times. The kernel also maintains more than one paged pool
that can be paged into and out of the system. Both memory
pools are located in the system part of the address space
and are mapped in the virtual address space of every pro-
cess. In addition to the paged and non-paged pools, there
are a few other pools with special attributes or uses. For
example, there is a pool region in session space, which is
used for data that is common to all processes in the session
(Russinovich et al., 2012, pp. 212e213).

The majority of key kernel structures, such as those
shown in Table 1 are allocated on the non-paged pool. For
example they include objects associated with running and
terminated processes, network connections, and loaded
kernel modules. Combined with the fact that non-paged
pool pages are guaranteed to be resident in physical
memory, it is evident that the non-paged pool is most
relevant to memory analysts.

The remainder of this paper will focus on analysis of the
non-paged pool for 64-bit versions of Windows from Win-
dows Vista to Windows 8.1; however, the techniques
described here can also be adapted to other pool types and
operating system versions.

Pool sizes

The initial size of the non-paged pool is dependent on
the amount of physical memory on the system, and is 3% of
system RAM or 40 MiB3 (whichever is larger). On 64-bit
systems the pool can grow to a maximum of 75% of sys-
tem RAM or 128 GiB (whichever is smaller) (Russinovich
et al., 2012, p. 213).

64-bit versions of Windows dynamically allocate the
memory reserved for the pool. While the initial pool sizes
as described above are reserved by the memory manager,
they are very sparsely allocated. The absolute minimum
allocated amount is unknown, but we have observed non-

Table 1
Selected non-paged pool allocations.

Purpose Pool tag

Driver object Driv
File object File
Kernel module MmLd
Logon session SeLs
Process Proc
Registry hive CM10
TCP endpoint TcpE
TCP listener TcpL
Thread Thre
UDP endpoint UdpA

1 The Volatility Foundation, http://www.volatilityfoundation.org/.
2 The Rekall Team, http://www.rekall-forensic.com/.

3 The initial size of the non-paged pool is 10% of system RAM for sys-
tems with less than 400 MiB of RAM.

J.T. Sylve et al. / Digital Investigation 16 (2016) S25eS32S26

http://www.volatilityfoundation.org/
http://www.rekall-forensic.com/


Download English Version:

https://daneshyari.com/en/article/10342340

Download Persian Version:

https://daneshyari.com/article/10342340

Daneshyari.com

https://daneshyari.com/en/article/10342340
https://daneshyari.com/article/10342340
https://daneshyari.com

