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a b s t r a c t

The forensics community is increasingly embracing the use of memory analysis to enhance
traditional storage-based forensics techniques, because memory analysis yields a wealth of
information not available on non-volatile storage. Memory analysis involves capture of a
system's physical memory so that the live state of a system can be investigated, including
executing and terminated processes, application data, network connections, and more.
One aspect of memory analysis that remains elusive is investigation of the system's swap
file, which is a backing store for the operating system's virtual memory system. Swap files
are a potentially interesting source of forensic evidence, but traditionally, most swap file
analysis has consisted of string searches and scans for small binary structures, which may
in some cases be revelatory, but are also fraught with provenance issues. Unfortunately,
more sophisticated swap file analysis is complicated by the difficulty of capturing mutually
consistent memory dumps and swap files, the increasing use of swap file encryption, and
other issues. Fortunately, compressed RAM facilities, such as those in Mac OS X Mavericks
and recent versions of the Linux kernel, attempt to reduce or eliminate swapping to disk
through compression. The storage of compressed pages in RAM both increases perfor-
mance and offers an opportunity to gather digital evidence which in the past would have
been swapped out. This paper discusses the difficulty of analyzing swap files in more
detail, the compressed RAM facilities in Mac OS X and Linux, and our new tools for analysis
of compressed RAM. These tools are integrated into the open-source Volatility framework.
© 2014 Digital Forensics Research Workshop. Published by Elsevier Ltd. All rights reserved.

Introduction

Traditionally, digital forensics has focused primarily on
non-volatile storage devices and involved preservation,
imaging, recovery, and analysis of files stored on hard
drives, removable media, etc. That investigative model
typically embraced a “pull the plug and image” strategy,
which involved powering down forensic targets without
regard for their live state andmaking copies of non-volatile
storage devices for analysis. This resulted in loss of a sig-
nificant amount of potentially actionable digital evidence,

including information about currently executing processes,
live network connections, data in the clipboard, volatile
malware, and other OS and application data structures.
Increasingly, the forensics community has become aware of
the potential for live forensics and memory analysis to
enhance the investigative process, yielding evidence not
available on non-volatile storage. Live forensics typically
involves a survey of a running machine “on-the-spot”,
using a set of statically compiled binaries which are
executed on the target to glean information about its state
and available evidence. These tools are often traditional
systems administration tools, which list running processes,
monitor filesystem activity, capture network traffic,
monitor changes to the Windows registry, and attempt to
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detect malware, such as keystroke loggers. Memory anal-
ysis typically involves capture of a system's physical
memory (e.g., a RAM dump, acquired via a combination of
software and/or hardware) for later investigation, offline,
using memory analysis tools. Live forensics and memory
analysis are similar in that they both potentially offer a
wealth of data to a forensic investigator that would be
otherwise unavailable. Similarly, they are both potentially
invasive, disturbing the state of a running system to varying
degrees, but memory analysis strives to minimize this
disruption by requiring only that amemory dumping utility
be executed on the system, rather than a number of
evidence-gathering applications. Because of recent
research advances in memory analysis, much of the live
system state observable with live forensics can now be
recreated in the lab from a physical memory dump. One
aspect of memory analysis that remains elusive is investi-
gation of the system's swap file, which is a backing store for
the operating system's virtual memory system. Virtual
memory is discussed in greater detail in Section Memory
analysis for modern virtual memory systems, but briefly,
the swap file is typically stored on disk and contains the
contents of physical memory pages that have been swap-
ped out due to highmemory pressure, essentially, a shortage
of RAM induced by running large numbers of or particularly
memory-hungry applications. The swap file can therefore
contain actionable evidence, but because the swap file can
be large and is stored on slow, non-volatile media,
capturing a mutually consistent copy of both RAM and the
swap file while a system continues to execute is very
challenging.1 There are additional challenges in swap file
analysis, which are discussed in detail in Section Swap files
as a source of evidence, but a new virtual memory
component emerging in modern operating systems, called
compressed RAM or compressed swap, offers an opportunity
to gather digital evidence which in the past would have
been swapped to disk. After providing some additional
background in the following sections on virtual memory
systems and memory analysis, we discuss our newly
developed plugins for the Volatility framework, which
automatically identify and decompress compressed mem-
ory regions in both Mac OS X Mavericks and Linux, making
this data available for analysis. We also discuss the results
of a series of experiments, which offer insight into the
quantity and quality of the additional evidence made
available by our plugins.

Memory analysis for modern virtual memory systems

Virtual memory is an essential component of modern
operating systems, providing a linear address space for
processes and significantly simplifying memory manage-
ment. Operating systems often include a paging mecha-
nism in the virtual memory system, to allow the total size
of the allocated memory regions of executing processes to
exceed the size of physical RAM, by overflowing RAM into a
swap file. Primitive versions of paging have existed since

the Atlas system in the 1960s (Morris et al., 1967). In this
paper, we focus on operating systems that fully support
paging, although some operating systems, particularly
those for mobile or embedded devices, do support virtual
memory but either do not support paging at all (e.g., QNX)
or support paging but without a swap file, bringing in read-
only pages as necessary from files on non-volatile storage
(e.g., iOS). On modern hardware, virtual memory is
implemented using a combination of hardware and soft-
ware, with most modern CPUs providing hardware support
for virtual to physical address translation and tracking
whether pages are resident in RAM. Access to non-resident
pages results in a page fault, which is handled by the
operating system, triggering one of a number of possible
actions, including allocation or the page being swapped in.

Swapping must be minimized to avoid thrashing
(Denning, 1968a), where pages are continuously moved to
and from the swap file because of a critical shortage of
RAM, and the resultant impact on performance. Part of the
reason that excessive swapping has such a serious impact
on performance is the disparity between disk bandwidth
and memory bandwidth, which differ by orders of magni-
tude. To illustrate this disparity, consider the memory
bandwidth of the high- performance Mac Pro, introduced
by Apple in 2013, which peaks at 60 GB/s. This model also
sports some of the fastest flash storage to date, but storage
bandwidth still peaks at 1.2 GB/s. To maximize perfor-
mance, modern operating systems employ sophisticated

Fig. 1. Image file and HTML fragment carved from a Windows swap file.
These are deleted documents “trapped” in the un-sanitized space allocated
by Windows to the swap file.

1 However, in virtualized environments, a virtual machine snapshot
can be generated, which may reduce the level of inconsistency.
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