
VMI-PL: A monitoring language for virtual platforms using
virtual machine introspection

Florian Westphal a, b, *, Stefan Axelsson a, Christian Neuhaus b, Andreas Polze b

a Blekinge Institute of Technology, Sweden
b Hasso-Plattner-Institute, University of Potsdam, Germany

Keywords:
Virtualization
Security
Monitoring language
Live forensics
Introspection
Classification

a b s t r a c t

With the growth of virtualization and cloud computing, more and more forensic in-
vestigations rely on being able to perform live forensics on a virtual machine using virtual
machine introspection (VMI). Inspecting a virtual machine through its hypervisor enables
investigation without risking contamination of the evidence, crashing the computer, etc.
To further access to these techniques for the investigator/researcher we have developed a
new VMI monitoring language. This language is based on a review of the most commonly
used VMI-techniques to date, and it enables the user to monitor the virtual machine's
memory, events and data streams. A prototype implementation of our monitoring system
was implemented in KVM, though implementation on any hypervisor that uses the
common x86 virtualization hardware assistance support should be straightforward. Our
prototype outperforms the proprietary VMWare VProbes in many cases, with a maximum
performance loss of 18% for a realistic test case, which we consider acceptable. Our
implementation is freely available under a liberal software distribution license.
© 2014 Digital Forensics Research Workshop. Published by Elsevier Ltd. All rights reserved.

Introduction

More and more computing services are being provided
remotely in the form of so called “cloud based services” in
the form of virtual machines, as it is done by Windows
Azure, or Amazon EC2, etc. Thus virtualization is becoming
an evermore important tool for providing computing ser-
vices to customers, especially when it comes to providing
e.g. web servers, data base servers etc. so called infra-
structure as a service (IaaS). This market segment is growing
fast, at present.

Hence, the probability that forensic investigations will
have to be performed on virtual machines will continue to
increase. Whereas virtual machines can be treated and

analyzed as normal computers (Flores Cruz and Atkison,
2011), their use in cloud settings poses several challenges,
and also opportunities for the investigation. These chal-
lenges include legal issues, such as cross-border legislation
problems (Biggs and Vidalis, 2009), as well as trust issues
(Dykstra and Sherman, 2012).

Despite these challenges, virtual machines also have an
advantage over real computers when it comes to live fo-
rensics. Whereas live forensics on a real machine always
causes state changes, possibly contaminating the evidence
(Adelstein, 2006), live forensics on a virtual machine can be
done with minimal interference with its state, by using
virtual machine introspection (VMI) (Cruz and Atkison,
2012). Several VMI techniques have been developed and
implemented, in recent years.

To this end we have developed a domain specific lan-
guage (DSL) named VMI-PL, that can be used to define and
apply common VMI techniques for the monitoring of vir-
tual machines. This DSL provides a simple way for the user

* Corresponding author. Hasso-Plattner-Institute, University of Pots-
dam, Germany.

E-mail address: florian.westphal@student.hpi.uni-potsdam.de (F.
Westphal).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2014.05.016
1742-2876/© 2014 Digital Forensics Research Workshop. Published by Elsevier Ltd. All rights reserved.

Digital Investigation 11 (2014) S85eS94

mailto:florian.westphal@student.hpi.uni-potsdam.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2014.05.016&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2014.05.016
http://dx.doi.org/10.1016/j.diin.2014.05.016
http://dx.doi.org/10.1016/j.diin.2014.05.016


to specify virtual machine events which should be inter-
cepted, registers and virtual memory, which should be read
or written to, and data streams from and to the virtual
machine, which should be logged. In addition to data about
the hardware level, the language provides means to obtain
operating system level information by interpreting the data
available to the hypervisor. This combination of ease of use
and capabilities it provides makes it, in our opinion, a
valuable tool for live forensic investigations.

In connection with the language design, we propose a
new classification for VMI techniques, which is based on
the respective key mechanism of the VMI technique. These
key mechanisms can be data accesses, hardware events, or
data transfers across the border between virtual machine
and hypervisor. In addition to these theoretical contribu-
tions, we also developed a prototype, implementing our
language design in the Kernel-based Virtual Machine
(KVM) hypervisor, which is freely available under an open
source license.

Related work

As VMI-PL allows the implementation of new moni-
toring strategies without modifying the hypervisor further
beyond that which was necessary to implement support for
VMI-PL. We limit the related work section to those
approaches that share this characteristic. This excludes
approaches such as HyperDbg (Fattori et al., 2010) (which is
not a true hypervisor based system), and VMST (Fu and Lin,
2012) (that while their approach has much to commend it,
is limited to just the one read-only strategy of memory
introspection). We have only found two other publicly
available solutions for which this is true: LibVMI,1 and
VMware VProbes (VMware and Inc, 2011).

LibVMI is an introspection library for Xen and KVM,
which was derived from the XenAccess project (Payne
et al., 2007). While Xen is fully supported by this library,
the support for KVM is more limited, due to missing hooks
in the KVM code. With LibVMI, it is possible to read and
write virtual memory, as well as to register handlers for
certain events occurring within a virtual machine. These
events can be memory accesses, register writes, or in-
struction execution, where instruction execution can be
tracked either in single stepping mode or by specifying a
particular virtual address.

VProbes, on the other hand, is a monitoring solution for
VMware Workstation and VMware Fusion, which provides
the possibility to specify probes, which are executed on
certain events. The specification of these probes is done in
VMware's own language called Emmett. While the initial
idea of VProbes was to support external debugging of vir-
tual machines (Adams, 2007), it has also been shown to be
useful in the context of e.g. intrusion detection (Dehnert,
2012). It should be noted that Emmett only allows the
reading of information from the monitored host.

In contrast to VProbes, our monitoring language sup-
ports writing to effect the manipulation of the internal
state of the virtual machine.

Our monitoring language differs from both these solu-
tions in that it provides access to operating system level
information and events. This simplifies investigations,
since the interpretation of the hardware state is done
automatically. Another benefit from our approach is that it
monitors data streams from and to the virtual machine,
which cannot be monitored using the other solutions. This
feature enables an investigator to monitor network traffic,
as well as the keyboard input of a user. Finally, our moni-
toring language has a simple syntax, which enables a user
to obtain data from a virtual machine without the need to
have an extensive background in low level programming.

Virtual machine introspection

Virtual machine introspection (VMI) was coined by
Garfinkel and Rosenblum (Garfinkel and Rosenblum, 2003)
and was defined by Pfoh et al. as a “method of monitoring
and analyzing the state of a virtual machine from the hyper-
visor level.” (Pfoh et al., 2009). Since VMI obtains this state
information directly from the hypervisor, the semantic
knowledge of the guest operating system's abstractions is
lost. Hence, it is difficult to interpret the data. This was first
described by Chen and Noble as the semantic gap problem
(Chen and Noble, 2001). In order to overcome the semantic
gap, there are different strategies, which were categorized
by Pfoh et al. (Pfoh et al., 2009) as out-of-band deliveryd-
where the needed semantic knowledge is supplied exter-
nally, in-band deliverydthat pass the needed data along
with the semantic information directly from inside the
guest operating system to the hypervisor, and derivation-
dthat derives the needed information from how the guest
operating system is using the given hardware interface.

These approaches have different advantages and dis-
advantages when it comes to the amount of information
they can easily provide and how difficult it is for an attacker
to deceive them. Additionally, it should be noted that in-
band delivery techniques are less suitable for live forensics,
since they require the running of software inside the virtual
machine, potentially manipulating its state to a consider-
able extent, and therefore neglecting the advantage VMI
normally provides for live forensics.

VMI techniques

For reasons that will become clear we decided to further
refine this classification of VMI techniques.

While all techniques described in the following sections
can be categorized as out-of-band delivery or derivation
techniques, we will divide them further into data-based,
event-based, and stream-based techniques. This categori-
zation has been useful in the specification of our moni-
toring language, since it takes into account the underlying
mechanisms of the particular VMI technique.

Data-based techniques

Data-based VMI techniques focus on the virtual storage
of a virtual machine, such as registers, main memory, and
the virtual hard disk. These techniques obtain information
from the virtual machine by reading that storage and1 https://code.google.com/p/vmitools/.

F. Westphal et al. / Digital Investigation 11 (2014) S85eS94S86

https://code.google.com/p/vmitools/


Download English Version:

https://daneshyari.com/en/article/10342385

Download Persian Version:

https://daneshyari.com/article/10342385

Daneshyari.com

https://daneshyari.com/en/article/10342385
https://daneshyari.com/article/10342385
https://daneshyari.com

