
Developing a reusable workflow engine

Diogo M.R. Ferreira a,*, J.J. Pinto Ferreira b

a INESC Porto, Campus da FEUP, Rua Dr. Roberto Frias, 378, 4200-465 Porto, Portugal
b Faculty of Engineering U.P., Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Received 14 February 2002; received in revised form 30 July 2003; accepted 24 September 2003

Available online 27 November 2003

Abstract

Every time a workflow solution is conceived there is a large amount of functionality that is eventually reinvented and

redeveloped from scratch. Workflow management systems from academia to the commercial arena exhibit a myriad of

approaches having as much in common as in contrast with each other. Efforts in standardizing a workflow reference

model and the gradual endorsement of those standards have also not precluded developers from designing workflow

systems tailored to specific user needs. This article is written in the belief that an appropriate set of common workflow

functionality can be abstracted and reused in forthcoming systems or embedded in applications intended to become

workflow-enabled. Specific requirements and a prototype implementation of such functionality, named Workflow

Kernel, are discussed.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Workflow management systems; Workflow engines; Component reuse

1. Introduction

The workflow reference model proposed by the

workflow management coalition [17] defines a

framework for relating workflow management
systems and their capabilities. Within this frame-

work, supporting tools, execution services, client

applications and external applications interact

according to a set of interfaces. At the heart of this

framework is the workflow enactment service, an

execution service comprising one or more work-

flow engines. According to the reference model, a

workflow engine is ‘‘a software service that pro-

vides the run time execution environment for a

process instance’’ [17].

In this sense every workflow product, prototype
or approach entails a workflow engine in one way

or another. Interpreting a process definition, cre-

ating process instances from those definitions, and

managing the execution of those instances are es-

sential chores of every workflow management

system. These capabilities represent functionality

that is coded and embedded in every workflow

solution. Notwithstanding, workflow systems are
usually portrayed by supporting tools such as

process editors or audit trail viewers. The impor-

tant workflow functionality, however, is the one

*Corresponding author. Tel.: +351-22-209-4329; fax: +351-

22-209-4050.

E-mail addresses: dmf@inescporto.pt (D.M.R. Ferreira),

jjpf@fe.up.pt (J.J. Pinto Ferreira).

1383-7621/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.sysarc.2003.09.004

Journal of Systems Architecture 50 (2004) 309–324

www.elsevier.com/locate/sysarc

mail to: dmf@inescporto.pt


creating and managing the execution of process

instances by iterating through individual tasks

and triggering the appropriate actions.

Up to now, this functionality has been typically

implemented over and over again as each work-

flow management system is developed. Existing
standards or common views such as the ones

proposed by the WfMC could lay down the

guidelines for implementing workflow engines.

And, to some extent, they do. But, as pointed out

by [15], existing standards focus on the syntax of

the reference model interfaces without clearly

specifying the respective semantics and usage.

Therefore, when confronted with specific user
needs, developers often make use of standards

according to their own interpretation. The previ-

ous authors go even further and compare the

present situation with the early days of database

management when, in the absence of the relational

and entity-relationship models, an incongruous set

of database solutions coexisted.

In this respect, this article argues, as other au-
thors have done, that Petri net theory could be-

come to workflow management what the relational

model became to database management. It is also

argued that a reasonable amount of common

workflow functionality can be abstracted from

existing approaches, and that from this abstraction

it is possible to develop a Workflow Kernel that

can be reused and embedded in workflow-enabled
systems and applications, so as to prevent repeated

and discordant implementations of general work-

flow features.

2. Common approaches and reusability

Successful workflow products such as Staff-
waree, InConcerte, or FlowMark� are an elab-

orate compound of user requirements. Throughout

the years these and other leading products have

been improved in order to fulfill or anticipate

particular user needs. But although they share the

common goal of business process integration, each

product displays its own philosophy and approach.

From the event-driven process chains (EPCs) of
ARIS� Toolset [12] to the four-stage workflow

loop of ActionWorkflowe [8] there are several

approaches to workflow management. Many

workflow solutions are built on a set of constructs

that are believed to be appropriate to describe

business processes. Staffwaree has its own con-

structs for modeling business processes, InCon-

certe has another set of constructs, and ARIS�

and ActionWorkflowe have their own constructs

too.

Furthermore, every product provides a process

editor to graphically define or modify processes,

provides support for monitoring process instances,

and client applications to manage individual tasks.

These support tools, which are the front-end of the

workflow solution, are the functionality most seen
by the user, and take a significant effort to develop.

Still, behind this front-end each one of these so-

lutions contains an engine capable of interpreting

the process definition language, creating process

instances from process definitions, and controlling

the execution of these instances. Regardless of

product philosophy, what lies in the heart of each

workflow solution is an engine that glues every-
thing together and makes the desired orchestration

possible.

The WfMC�s workflow reference model de-

scribes the purpose of a workflow engine by a set

of features that it is supposed to address. But then,

if these features are well known and in fact pro-

vided by each workflow solution, why not isolate

that functionality in a component that can be
plugged in or embedded in every workflow appli-

cation? Some proposals have been brought up as

an answer to this question.

2.1. The Drala workflow engine

The Drala workflow engine [5] is an embedda-

ble Java component that provides a comprehen-
sive API for defining, executing and monitoring

processes. It is not a workflow management system

by itself; it is rather a core of workflow function-

ality which is intended to simplify the implemen-

tation of workflow management systems. The

Drala workflow engine already includes some

support tools such as a process editor, but it allows

developers to replace these tools or to build addi-
tional user interfaces. Process definitions can be

imported and exported in an XML format, and the

310 D.M.R. Ferreira, J.J. Pinto Ferreira / Journal of Systems Architecture 50 (2004) 309–324



Download English Version:

https://daneshyari.com/en/article/10342394

Download Persian Version:

https://daneshyari.com/article/10342394

Daneshyari.com

https://daneshyari.com/en/article/10342394
https://daneshyari.com/article/10342394
https://daneshyari.com

