
DFRWS 2015 USA

Database forensic analysis through internal structure carving

James Wagner a, Alexander Rasin a, *, Jonathan Grier b

a DePaul University, Chicago, IL, USA
b Grier Forensics, USA

Keywords:
Database forensics
File carving
Memory analysis
Stochastic analysis
Database storage modeling

a b s t r a c t

Forensic tools assist analysts with recovery of both the data and system events, even from
corrupted storage. These tools typically rely on “file carving” techniques to restore files
after metadata loss by analyzing the remaining raw file content. A significant amount of
sensitive data is stored and processed in relational databases thus creating the need for
database forensic tools that will extend file carving solutions to the database realm. Raw
database storage is partitioned into individual “pages” that cannot be read or presented to
the analyst without the help of the database itself. Furthermore, by directly accessing raw
database storage, we can reveal things that are normally hidden from database users.
There exists a number of database-specific tools developed for emergency database re-
covery, though not usually for forensic analysis of a database. In this paper, we present a
universal tool that seamlessly supports many different databases, rebuilding table and
other data content from any remaining storage fragments on disk or in memory. We define
an approach for automatically (with minimal user intervention) reverse engineering
storage in new databases, for detecting volatile data changes and discovering user action
artifacts. Finally, we empirically verify our tool's ability to recover both deleted and
partially corrupted data directly from the internal storage of different databases.
© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Introduction

Because most personal and company data is stored in
digital form, forensic analysts are often tasked with
restoring digital data contents or even reconstructing user
actions based on system snapshots. The digital data re-
covery process is composed of both hardware and software
phases. Hardware techniques extract data from physically
damaged disks, while software techniques make sense of
the recovered data fragments. Our work presented here
focuses on software-based restoration techniques in the
context of relational database management systems
(DBMSes). A well-recognized forensic technique is the

process of “file carving” that bypasses metadata and in-
spects file contents directly. If a sufficient proportion of
the file can be recovered and recognized, then the content
of the file (e.g., images or document text) can then be
restored.

It is our contention that a significant amount of data,
particularly what is referred to as Big Data, is not stored in
flat files, but rather resides in a variety of databases within
the organization or personal devices. Standard file carving
techniques are insufficient to meaningfully recover the
contents of a database; indeed, without themetadata of the
DBMS (catalog), the contents of database tables could not
be presented to the forensic analyst in a coherent form. The
work presented here thus bridges this gap by introducing a
novel database carving approach that allows us to
reconstitute database contents and reason about actions
performed by the database users.

* Corresponding author.
E-mail addresses: jwagne32@mail.depaul.edu (J. Wagner), arasin@

cdm.depaul.edu (A. Rasin), jdgrier@grierforensics.com (J. Grier).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

http://dx.doi.org/10.1016/j.diin.2015.05.013
1742-2876/© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Digital Investigation 14 (2015) S106eS115

http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:jwagne32@mail.depaul.edu
mailto:arasin@cdm.depaul.edu
mailto:arasin@cdm.depaul.edu
mailto:jdgrier@grierforensics.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.05.013&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.05.013
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.diin.2015.05.013
http://dx.doi.org/10.1016/j.diin.2015.05.013


Our contributions

We present a comprehensive collection of techniques
for forensic analysis of both static and volatile content in a
database:

� We define generalized storage layout parameters for
parsing the raw storage (including the volatile kind) of
many different relational databases.

� We compare and contrast different storage design
decisions made by a variety of DBMSes and discuss the
resulting implications for forensic analysis.

� We present a tool that can reverse-engineer newDBMS
storage parameters by iteratively loading synthetic
data, executing test SQL commands and comparing
resulting storage changes.

� We also present a tool that, given a disk image or a RAM
snapshot can do the following:
e Identify intact DBMS pages, even for multiple

DBMSes on the same disk, for all known storage
configuration parameters.

e Recover the logical schema (SQL tables and con-
straints) and all database table rows for known
parameters (a parameter set will support several
different versions of the DBMS, depending on stor-
age changes version-to-version).

e Extract a variety of volatile data artifacts (e.g.,
deleted rows or pre-update values).

e Detect evidence of user actions such as row inser-
tion order or recently accessed tables.

Paper outline

Fig. 1 shows the high-level architecture overview. In
Section “Database storage structure” we review the prin-
ciples of page-based data storage in relational databases
and define the parameters for parsing and recovering these
pages. In the same section we also summarize important
database-specific storage structures (i.e., non-tables) and
discuss the fundamentals of volatile storage and updates. In
Section “Deconstructing database storage”, we analyze the
interesting storage layout parameter trade-offs and explain

how these parameters and some user actions can be
discovered within a DBMS. Section “Experiments” reports
experimental analysis results for a variety of different da-
tabases and environment scenarios. Finally, Section
“Related work” summarizes related work and Section
“Conclusion and future work” contains the conclusions and
mentions a number of promising future work directions.

Database storage structure

The storage layer in relational databases partitions all
physical structures into uniform pages with a typical size of
4 or 8 KBytes because using a fixed page size significantly
simplifies storage and cache management. Page size can be
changed by the database administrator, but such a change
requires rebuilding data structures: page size cannot be
changed for individual tables, at a minimum it is global per
tablespace. Two different layers of metadata are involved in
database storage: the general information that describes
where and how the tables are stored and the per-page
metadata for the contents of each individual page. The
forensic challenge lies in reconstructing all surviving
database content directly from disk (or memory) image
using only the metadata included with each page.

From a high level perspective, all relational database
pages share the same general structure and break down
into three components of interest: the header, the row
directory and the row data itself. Depending on the spe-
cifics of each database, the page header stores general page
information (e.g., table or an index? orwhich table or index is
it?). This part of the overhead is found at the beginning of
the page structure. The row directory component is
responsible for keeping track of the row locations as new
rows are inserted or old rows are deleted. This row direc-
torymay be positioned either between the page header and
the row data or at the very end of the page following the
row data. The third component is the row data structure
that contains the actual page content along with some
additional overhead. Fig. 2 shows an overview of how these
structures typically interact within a page; the “other
structures” area can contain other optional elements only
relevant under specific circumstances (e.g., particular kinds
of updates). We next describe the comprehensive set of

Fig. 1. Overview of parameter detection and data analysis. Fig. 2. A structural overview of a database page.

J. Wagner et al. / Digital Investigation 14 (2015) S106eS115 S107



Download English Version:

https://daneshyari.com/en/article/10342415

Download Persian Version:

https://daneshyari.com/article/10342415

Daneshyari.com

https://daneshyari.com/en/article/10342415
https://daneshyari.com/article/10342415
https://daneshyari.com

