Digital Investigation 11 (2014) S10-S17

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

Automated evaluation of approximate matching algorithms
on real data

@ CrossMark

Frank Breitinger *'*, Vassil Roussev "

2da/sec - Biometrics and Internet Security Research Group, Hochschule Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
Y Department of Computer Science, University of New Orleans, New Orleans, LA 70148, USA

ABSTRACT

Keywords:
Digital forensics
Approximate matching

Bytewise approximate matching is a relatively new area within digital forensics, but its impor-
tance is growing quickly as practitioners are looking for fast methods to screen and analyze the
increasing amounts of data in forensic investigations. The essential idea is to complement the

:?;ﬁ:;lgty hashing use of cryptographic hash functions to detect data objects with bytewise identical represen-
sdhash tation with the capability to find objects with bytewise similar representations.
mrshov2 Unlike cryptographic hash functions, which have been studied and tested for a long time,
ssdeep approximate matching ones are still in their early development stages and evaluation
FRASH methodology is still evolving. Broadly, prior approaches have used either a human in the
loop to manually evaluate the goodness of similarity matches on real world data, or
controlled (pseudo-random) data to perform automated evaluation.
This work’s contribution is to introduce automated approximate matching evaluation on
real data by relating approximate matching results to the longest common substring (LCS).
Specifically, we introduce a computationally efficient LCS approximation and use it to
obtain ground truth on the t5 set. Using the results, we evaluate three existing approxi-
mate matching schemes relative to LCS and analyze their performance.
© 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction One of the most common processing methods is known

file filtering, which-in its basic form-consist of computing

One of the biggest challenges facing a digital forensic the crypto hashes for all files on a target device, and

investigation is coping with the huge number of files that
need to be processed. This is a direct result of the expo-
nential growth in our ability to store digital artifacts and
the overall trend of digitizing all forms of information, such
as text, documents, images, audio and video. Consequently,
a critical requirement of modern forensic investigative
tools is the ability to perform large-scale automated
filtering and correlation of data.

* Corresponding author.
E-mail addresses: frank.breitinger@cased.de (F. Breitinger), vassil@
roussev.net (V. Roussev).

http://dx.doi.org/10.1016/j.diin.2014.03.002

comparing them to a reference database. Depending on the
underlying database, files are either filtered out (e.g., files of
the operating system) or filtered in (e.g., known offensive
content). For example, NIST maintains a large public data-
base of known content-the NSRL (NIST Information
Technology Laboratory, 2003-2013).

Reference databases based on crypto hashes provide
precise and reliable results; however, they can only identify
content based on identity. This makes them fragile and
difficult to maintain as digital artifacts (such as code) get
updated on a regular basis, making the reference data
obsolete. Therefore, it is useful to have algorithms that
provide approximate matches that can correlate closely
related versions of data objects.

1742-2876/© 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/3.0/).


http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:frank.breitinger@cased.de
mailto:vassil@roussev.net
mailto:vassil@roussev.net
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2014.03.002&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2014.03.002
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.diin.2014.03.002

E Breitinger, V. Roussev / Digital Investigation 11 (2014) S10-S17 S11

Generally, an approximate matching algorithm extracts
features of an input and produces a similarity digest; the
digests can then be compared to determine a measure of
similarity. Depending on the level of at which the algorithm
operates, one distinguishes between bytewise, syntactic- or
semantic approximate matching Breitinger et al. (2014).

Semantic matching operates at the highest level of
abstraction and provides results that are closest to human
perceptual notions of similarity. Syntactic matching relies
on purely syntactic rules to break up the data representa-
tion into features, e.g., cutting a header of a fixed byte size.
Bytewise matching relies only on the sequence of bytes that
make up a digital artifact, without reference to any struc-
tures (or their interpretation) within the data stream. In
what follows, we focus on bytewise approximate matching.

While crypto hashes are well-known and established in
various fields of computer science, approximate matching
is a rather new area and missing standardize processes for
testing and evaluating these algorithms. Breitinger et al.
(2013a) presented a test framework called FRASH which
performs efficiency as well as sensitivity & robustness tests.
Some time later FRASH was extended by a precision & recall
test on synthetic data (Breitinger et al., 2013b).

The main contribution of this work is the development
of automated precision and recall tests on real world data.
Compared to synthetic data, real world data yields more
realistic results and allows a better characterization of the
behavior of approximate matching algorithms. For this test,
we first created a ground of truth wherefore we identified
the similarity of objects based on an own metric called
approximate longest common substring (aLCS). We validate
our aLCS results by comparing them against the traditional
longest common substring (LCS). In a second step, we
analyze the false positive and false negative rates of the
approximate matching algorithms with respect to the
ground truth.

The rest of the paper is organized as follows: Sec. 2 in-
troduces the necessary background and related work. Our
evaluation methodology as well as some implementation
details are provided in Sec. 4. The core of this paper is Sec. 5
where we present our experimental results. Sec. 6
concludes the paper.

Background & related work

Hash functions (e.g., SHA-1 Gallagher and Director
(1995)) have a long tradition and are applied in various
fields of computer science like cryptography (Menezes
et al., 2001), databases (Sumathi & Esakkirajan, 2007, Sec.
9.6) or digital forensics (Altheide and Carvey, 2011, p. 56ff).
This is in contrast to bytewise approximate matching which
probably had its breakthrough in 2006 with an algorithm
called context triggered piecewise hashing (CTPH). In the
following we give a brief overview of bytewise approximate
matching and explain how these algorithms are tested.

Bytewise approximate matching algorithms
The introduction of approximate matching for forensic

purposes dates back to 2006 when Kornblum (2006) pre-
sented an approach called context triggered piecewise

hashing and Roussev et al. (2006) introduced similarity
hashing. Subsequently a small community came up which
follows the challenges of approximate matching (a.k.a.
‘similarity hashing’). To date, several different approaches
have been published, all with different strength and
weaknesses.

Besides the two most prominent implementations
ssdeep and sdhash, a couple of further algorithms raised.
However, most of them are very limited. For instance,
MinHash (Broder, 1997) and simHash (Sadowski and
Levin, 2007) allow to detect small changes (up to several
bytes) only, bbHash is too slow (2 min for 10 MiB),
mvHash-B is not file type independent. Hence, in what
follows we briefly describe the three most promising ap-
proaches with respect to digital forensics (a detailed
description is beyond the scope of this paper as we treat
them black boxes for testing purposes).

ssdeep

The ssdeep tool (') was introduced as a proof of
concept implementation of context triggered piecewise
hashing (CTPH) and has gained widespread acceptance. It
was presented by Kornblum (2006) and is based on the
spam detection algorithm from Tridgell (2002-2009). The
basic idea is behind it is simple: split an input into chunks,
hash each chunk independently and concatenate the chunk
hashes to a final similarity digest (a.k.a. fingerprint).

In order to split an input into chunks, the algorithm
identifies trigger points using a rolling hash (a variation of
the Adler-32 function) which considers the current context
of seven bytes. Each chunk is then given to the non-
cryptographic hash function FNV Noll (1994-2012).
Instead of using the complete FNV hash, CTPH only takes
the least significant 6 bits which is equal to one Base64
character. Thus, two files are similar if the have common
chunks.

Follow up efforts (Chen and Wang, 2008; Seo et al.,
2009; Baier and Breitinger, 2011) have targeted incremen-
tal improvement of the algorithm, however, none of these
implementations have been made available for public
testing and evaluation.

sdhash

The sdhash tool> was introduced four years later
Roussev (2010) in an effort to address some of the short-
comings of ssdeep. Instead of dividing an input into
chunks, the sdhash algorithm picks statistically improb-
able features to represent each object. A feature in this
context is a byte sequence of 64 bytes, which is hashed
using SHA-1 and inserted into a Bloom filter (Bloom, 1970).
The similarity digest of the data object is a sequence of 256-
byte Bloom filters, each of which represents approximately
10 KB of the original data. The tool also supports block
mode (Roussev, 2012) in which the input is split into fixed-
size chunks (by default 16 KiB) and the best features are
selected from each block.

1 http://ssdeep.sourceforge.net (last accessed 5 Dec. 2013).
2 http://sdhash.org (last accessed 5 Dec. 2013).


http://ssdeep.sourceforge.net
http://sdhash.org

Download English Version:

hitps://daneshyari.com/en/article/10342429

Download Persian Version:

https://daneshyari.com/article/10342429

Daneshyari.com


https://daneshyari.com/en/article/10342429
https://daneshyari.com/article/10342429
https://daneshyari.com

