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a b s t r a c t

Software based Memory acquisition on modern systems typically requires the insertion of
a kernel module into the running kernel. On Linux, kernel modules must be compiled
against the exact version of kernel headers and the exact kernel configuration used to
build the currently executing kernel. This makes Linux memory acquisition significantly
more complex in practice, than on other platforms due to the number of variations of
kernel versions and configurations, especially when responding to incidents. The Linux
kernel maintains a checksum of kernel version and will generally refuse to load a module
which was compiled against a different kernel version. Although there are some tech-
niques to override this check, there is an inherent danger leading to an unstable kernel and
possible kernel crashes. This paper presents a novel technique to safely load a pre-
compiled kernel module for acquisition on a wide range of Linux kernel versions and
configuration. Our technique injects a minimal acquisition module (parasite) into another
valid kernel module (host) already found on the target system. The resulting combined
module is then relinked in such a way as to grant code execution and control over vital
data structures to the acquisition code, whilst the host module remains dormant during
runtime.
ª 2014 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Memory analysis has rapidly become a very powerful
tool in the arsenal of incident responders and forensic ex-
aminers. Frameworks such as Volatility (Walters, 2007) or
Second Look (Raytheon Pikewerks, 2013) allow an in-depth
analysis of operating system data structures and can be
used to gain a thorough understanding on a live systems
state like running processes, network connections and
mapped files.

For this to work it is necessary to acquire a memory
image. While multiple methods to do this using physical
access to the hardware exist (Carrier and Grand, 2004;

Boileau, 2006), physical access is often not available in an
incident response scenario. Thus, a software based
approach is sometimes the only viable option. Because
current operating systems operate in protected mode for
security and safety reasons, acquisition of the entire phys-
ical address space can only be achieved in systemmode. For
Linux this typically requires the injection of a Linux kernel
module into the running kernel. Since the Linux kernel
checks modules for having the correct version and check-
sums before loading, the kernel will typically refuse to load
a kernel module pre-compiled on a different kernel version
or configuration to the one being acquired. This check is
necessary since the struct layout of internal kernel data
structures varies between versions and configurations, and
loading an incompatible kernel versionwill result in kernel
instability and a potential crash.

For incident response this requirement makes memory
acquisition problematic, since often responders do not
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know in advance which kernel version they will need to
acquire. It is not always possible to compile the kernel
module on the acquired system, which may not even have
compilers or kernel headers installed.

Some Linux memory acquisition solutions aim to solve
this problem by maintaining a vast library of kernel mod-
ules for every possible distribution and kernel version
(Raytheon Pikewerks, 2013). While this works well as long
as the specific kernel is available in the library, it is hard to
maintain and can not cover cases where the kernel has
been custom compiled or just is not common enough to
award a place in the library. This is especially the case on
mobile phones. Often phone vendors might publish the
kernel version they used, but the configuration and details
on all vendor specific patches are often not known, severely
impeding memory acquisition (Sylve et al., 2012).

Rootkit authors also have encountered the same prob-
lem when trying to infect kernels where the build envi-
ronment is not available. Recent work for Android shows
that while it is trivial to bypass module version checking, it
is still a hard problem to identify struct layout in unknown
binary kernels (You, 2012). In the Android case this prob-
lem is solved by restricting dependencies to very few
kernel symbols and reverse engineering their data struc-
tures on the fly using heuristics (You, 2012).

A solution for data structure layout detection could be
live disassembly of functions which are known to be stable
and use certain members in these structs. Recent work
showed that it’s possible to dynamically determine the
offsets of particular members in certain structs used in
memory management, file I/O and the socket API (Case
et al., 2010).

Kernel integrity monitoring systems also have similar
problems, as they have to monitor dynamic data and need
to infer its type and structure to analyze it. Since this data
layout changes with kernel version, these systems need to
infer its data layout from external sources. The KOP
(Carbone et al., 2009) and MAS (Weidong et al., 2012)
frameworks, are exemplary systems designed to monitor
integrity of dynamic kernel data structures. Their
approach involves statically analyzing the kernel source
code and debug symbols to infer type information for
dynamic data. However, they rely on the kernel source-
code and debug symbols for the exact running kernel
being available in advance, which is exactly the de-
pendency we can not guarantee in the incident response
scenario.

Contributions. We have developed a method to inject a
parasite kernel module into an already existing host kernel
module as found on the running system. Most modern
kernels have a large number of legitimate kernel modules,
compiled specifically for the running kernel, already pre-
sent on the system. Our approach locates a suitable existing
kernel module (Host Module), injects a new kernel module
into it (Parasite module) and loads the combined module
into ring 0.

The resulting modified kernel module is fully compat-
iblewith the running kernel. All data structures accessed by
the kernel are taken from the Host module, andwere in fact
compiled with compatible kernel headers and config op-
tions. However, control flow is diverted from the Host

module to the Parasite module, by modifying static linking
information. This allows the parasite module’s code to use
the hosts’ structs for communication with kernel APIs.

Anatomy of a Linux kernel module

Linux kernel modules are relocatable ELF object files
and not an executable. The obvious difference is that
executable ELF files are processed by a loader, while relo-
catable objects are intended for a linker.

The loader relies on the ELF Program Headers to identify
the file layout and decide which parts to map into memory
with which permissions. The linker instead relies on ELF
section headers for this, with special sections containing
symbol string and relocation tables, to identify and resolve
inter-section symbol references (Fig. 1).

Dependencies on other objects in an ELF executable are
resolved by dynamic linking. In this process, external
symbols are referenced through the Global Offset Table
(.got) and Procedure Linkage Table (.got.plt), and resolved
by the dynamic linker at runtime (Fig. 2).

In contrast to this, relocatable ELF objects are statically
linked using relocations. Each section with references to
symbols in other sections or objects has a corresponding
relocation table. Entries in these tables contain information
on the specific symbol referenced, and how to patch a
specific code or data reference with the final address of the
symbol after it has been relocated.

One or more of these relocatable objects can be linked
together by placing them into their final position in the
final executable or address space, after which the linker
applies all relocations to patch the now final references
directly into the code.

In the context of the Linux kernel this means that
loading a kernel module is actually the same thing as
linking an executable, but with the executable being the
running kernel image.

How is a LKM loaded and linked

The actual loading process of a kernel module can be
characterized by four steps, which begin in user space
(Fig. 3):

Fig. 1. ELF file layout (TIS Committee, 1995).
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