
The Journal of Systems and Software 86 (2013) 349– 366

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

Layer assessment of object-oriented software: A metric facilitating white-box
reuse�

George Kakarontzasa,b,∗, Eleni Constantinoua, Apostolos Ampatzogloua, Ioannis Stamelosa

a Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
b Department of Computer Science and Telecommunications, T.E.I. of Larissa, 41110 Larissa, Greece

a r t i c l e i n f o

Article history:
Received 16 December 2011
Received in revised form 10 August 2012
Accepted 21 August 2012
Available online 29 August 2012

Keywords:
Software reuse
Object-oriented metrics
Software metrics

a b s t r a c t

Software reuse has the potential to shorten delivery times, improve quality and reduce development costs.
However software reuse has been proven challenging for most organizations. The challenges involve both
organizational and technical issues. In this work we concentrate on the technical issues and we propose
a new metric facilitating the reuse of object-oriented software based on the popular Chidamber and
Kemerer suite for object-oriented design. We derive this new metric using linear regression on a number
of OSS java projects. We compare and contrast this new metric with three other metrics proposed in the
literature. The purpose of the proposed metric is to assist a software developer during the development
of a software system in achieving reusability of classes considered important for future reuse and also in
providing assistance during re-architecting and componentization activities of existing systems.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In object-oriented (OO) systems objects collaborate closely in
order to provide a system feature. In order to effectively reuse any
class of an OO system a developer has to (a) understand the pro-
vided service of this class, (b) isolate this class from the rest of the
system by extracting the class and its dependencies, (c) possibly
adapt the extracted cluster of classes to the new system require-
ments and (d) test the class cluster to verify its correctness in the
new required context. In the ideal case it would also be beneficial to
transform the cluster of classes to a reusable component with pro-
vided and required interfaces, thus enabling the black-box reuse of
this component in future applications. There are many difficulties
associated with these activities mainly due to classes’ dependen-
cies, dependencies’ dependencies and so on. These class collections
can be very large and activities to understand, adapt and verify
them are labor intensive. In the context of the OPEN-SME Euro-
pean FP71 project we created a unified database of metrics relating
to the quality of OO software. An automated analysis tool collects

� This work is partially funded by the European Commission in the context of the
OPEN-SME ‘Open-Source Software Reuse Service for SMEs’ project, under the grant
agreement no. FP7-SME-2008-2/243768.

∗ Corresponding author at: Department of Computer Science and Telecommuni-
cations, T.E.I. of Larissa, 41110 Larissa, Greece.

E-mail addresses: gkakaron@teilar.gr (G. Kakarontzas), econst@csd.auth.gr
(E. Constantinou), apamp@csd.auth.gr (A. Ampatzoglou), stamelos@csd.auth.gr
(I. Stamelos).

1 http://opensme.eu.

the metrics and imports them in a relational database which relates
metrics originating from different sources. These related metrics
then, allow co-analyses using simultaneously different views of the
classes. A number of projects of various sizes and domains were
analyzed. The results were imported in the unified database, and
a number of recommenders were developed (with more currently
under development) that access the metrics database and recom-
mend clusters of classes that could be easily extracted from the
project and transformed into reusable components. The extracted
clusters are then tested, documented and placed in a code repos-
itory for future reuse by Small and Medium Enterprises (SMEs).
During our work with the tools of the project we developed heuris-
tics that could assist the component extraction activity. In most
cases, classes that have a small number of dependencies and are rel-
atively low in the system dependencies graph are easier to extract,
comprehend, test, etc., and consequently easier to reuse. Depend-
encies set cardinality and layer, unfortunately are only available
after a project is completed. They cannot be used independently
as estimators of the reusability of a class as it is constructed. We
hypothesized however that there is a relationship between the
Chidamber and Kemerer metrics for OO design (Chidamber and
Kemerer, 1994) and the layer and number of dependencies. If
such a relationship could be established then it would be possible
to examine the reusability of a class independently during pro-
gram construction. The benefit would be that a developer could
be assisted in estimating the reusability of classes and if these
classes were potentially useful in future applications, to be warned
against problems associated to low reusability. Since architectural
layers (Buschmann et al., 1996) are not expected to share the same

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.08.041

dx.doi.org/10.1016/j.jss.2012.08.041
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:gkakaron@teilar.gr
mailto:econst@csd.auth.gr
mailto:apamp@csd.auth.gr
mailto:stamelos@csd.auth.gr
http://opensme.eu
dx.doi.org/10.1016/j.jss.2012.08.041

350 G. Kakarontzas et al. / The Journal of Systems and Software 86 (2013) 349– 366

reusability levels, it is also beneficial to have an indication of the
expected range of reusability per layer.

In the rest of this work in Section 2 we provide the details of
the OSS projects that we used for this study as well as details of
the method for deriving the proposed facilitative metric for white-
box reuse. Next in Section 3 we compare our proposed metric with
three other proposed reuse metrics from the literature. In Section 4
we examine the validity of the proposed metric separately for each
of the examined projects to verify its effectiveness regardless the
individual project characteristics. We also perform a calibration of
the proposed metric to different project sizes and quantify the ben-
efit that can be achieved by such a process. In the following Section
5 we discuss threats to validity. Then, in Section 6 we discuss the
results and findings of this study and in Section 7 we discuss related
work. Finally in Section 8 we provide future research directions and
conclude.

2. Facilitating reusability assessment based on design
complexity metrics

The proposed facilitative metric for white-box reuse was
derived using analysis results from 29 Open Source Java projects
of various sizes and application domains. The projects used, along
with their sizes (number of classes excluding inner classes) and
their application domains, are listed in Table 1. These projects were
selected based on the following factors:

• The projects belong to different application domains since we
wanted our reusability assessment to be independent as much as
possible from the specifics of an application domain.

• They have different number of classes ranging from relatively
small projects with tens of classes to large projects with thou-
sands of classes.

• Most of them are mature and well-known projects, and finally
• Many of these projects were also used in other literature studies.

In total 21,775 classes were analyzed and for each class the follow-
ing data were collected: (a) the Chidamber and Kemerer metrics
for object-oriented design (Chidamber and Kemerer, 1994), (b) the
layer of each class as reported after condensing the cyclic depend-
encies of the class dependency graph using the Tarjan algorithm
(Tarjan, 1972), and (c) the Class Dependencies Size (CDS) metric,
which is the cardinality of the dependencies set of a class, recur-
sively following the dependencies of a class, which are necessary for
a brute-force reuse of the class in a new system. Next, we briefly
discuss these metrics as well as the design of the COPE tool that
assisted us in collecting them. Then, we explain the rationale and
the method used for deriving our proposed metric.

2.1. Metrics used

2.1.1. Chidamber and Kemerer metrics
The Chidamber and Kemerer metrics (Chidamber and Kemerer,

1994) were collected using the CKJM tool (Spinellis, 2005). These
metrics in general are indications of a class quality and can be used
to assess reusability as well as other qualities of an OO system.
The Chidamber and Kemerer suite contains six metrics which can
be collected for a class during development. They are widely sup-
ported by Integrated Development Environments (IDEs) and are
well accepted in the software industry. In Chidamber and Kemerer
(1994) the authors characterize the effect of their metrics’ suite on
the reusability of classes, but without determining the importance
of each metric in the class reusability estimation. More specif-
ically, each metric along with a short description of the metric
and its effect on class reusability as discussed in Chidamber and

Table 1
OSS projects, sizes and domains used.

No. Project No. of classes Application domain

1 Aglets 447 Framework and environment for
developing and running mobile
agents

2 Ant 493 Java library and command line
build tool

3 Argo UML 1578 UML modeling tool
4 Atunes 656 Audio player and organizer
5 Borg

Calendar
147 Calendar and task tracking system

6 Cocoon 85 Spring-based development
framework

7 Columba 1100 Email client and mail management
tool

8 Compiere 2221 ERP software
9 Contelligent 836 Content Management System

10 DrJava 2207 Development environment for
writing Java programs

11 EuroBudget 155 Checkbook management software
12 FreeCS 141 Chatserver (WebChat)
13 FreeMind 406 Mind-mapping software
14 GFP 312 Personal finance manager
15 JabRef 1987 Bibliography reference manager
16 JRdesktop 58 Remote desktop control, remote

assistance and desktop sharing
17 jBPM 520 Business Process Management

(BPM) suite
18 JEdit 508 Programmer’s text editor
19 jeeObserver 172 J2EE application server

performance monitoring tool
20 JMoney 54 Personal finance (accounting)

manager
21 Magnolia 955 Content Management System
22 OpenEJB 1759 Enterprise Java Beans (EJB)

Container System and Server
23 Projectivity 452 Enterprise Management platform
24 RapidMiner 2745 Data mining system and engine
25 Rhino 335 Implementation of Javascript

written in Java
26 SportsTracker 56 Application for recording sporting

activities
27 StoryTestIQ 377 Test framework to create

Automated Acceptance Tests
28 SweetHome3D 167 Interior design application
29 OpenProj 846 Desktop project management

application
Total No. of
classes

21,775

Kemerer (1994) is provided in Table 2. Along with these metrics a
presumed direction of the association of each metric to reuse is pro-
vided. Later a more precise relationship will be established, which
will form in fact the proposed facilitative metric for white-box
reuse.

2.1.2. The D-layer metric
The Classycle analyzer tool (Elmer, 2011) is used to discover

class dependencies and Directed Acyclic Graph (DAG) layers. To
avoid confusion between the architecture layers of the application
and the DAG layers, we call the latter D-layers. The Classycle tool
discovers strong dependencies between classes and packages, and
creates a Strongly Connected Components (SCC) graph applying
Tarjan’s algorithm (Tarjan, 1972). Next, according to SCCs calls, the
graph is condensated to an acyclic digraph of SCCs, from which the
layers are extracted (Fig. 1). Although D-layers do not correspond
to architectural layers since they are computed automatically from
static dependencies in the source code and they do not represent
actual decomposition decisions of systems’ architects, they are by
definition an over-approximation of the true architectural layering
since they maintain one important characteristic of the architec-
tural layering: each D-layer strictly depends upon lower D-layers

Download	English	Version:

https://daneshyari.com/en/article/10342516

Download	Persian	Version:

https://daneshyari.com/article/10342516

Daneshyari.com

https://daneshyari.com/en/article/10342516
https://daneshyari.com/article/10342516
https://daneshyari.com/

