
The Journal of Systems and Software 86 (2013) 367– 376

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

A high performance inter-domain communication approach for virtual machines

Yuebin Baia,c,∗, Yao Maa, Cheng Luob, Duo Lva, Yuanfeng Penga

a State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China
b Department of Computer Science, The University of Tokyo, Tokyo, Japan
c Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory, Shijiazhuang 050081, China

a r t i c l e i n f o

Article history:
Received 28 September 2011
Received in revised form 15 August 2012
Accepted 23 August 2012
Available online 1 September 2012

Keywords:
Virtualization
Inter-VM communication
Overhead
Communication path

a b s t r a c t

In virtualization technology field, researches mainly focus on strengthening the isolation barrier between
virtual machines (VMs) that are co-resident within a single physical machine. At the same time, there
are many kinds of distributed communication-intensive applications such as web services, transaction
processing, graphics rendering and high performance grid applications, which need to communicate with
other virtual machines at the same platform. Unfortunately, current inter-VM communication method
cannot adequately satisfy the requirement of such applications. In this paper, we present the design
and implementation of a high performance inter-VM communication method called IVCOM based on
Xen virtual machine environment. In para-virtualization, IVCOM achieves high performance by bypass-
ing some protocol stacks and privileged domain, shunning page flipping and providing a direct and
high-performance communication path between VMs residing in the same physical machine. But in
full-virtualization, IVCOM applies a direct communication channel between domain 0 and Hardware Vir-
tualization based VM (HV2M) and can greatly reduce the VM entry/exit operations, which has improved
the HV2M performance. In the evaluation of para-virtualization consisting of a few of benchmarks, we
observe that IVCOM can reduce the inter-VM round trip latency by 70% and increase throughput by up to
3 times, which prove the efficiency of IVCOM in para-virtualized environment. In the full-virtualized one,
IVCOM can reduce 90% VMX transition operations in the communication between domain 0 and HV2M.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Virtual machines (VMs) technology was introduced in the
1960s, and reached prominence in the early 1970s. It can cre-
ate virtual machines which can provide function and performance
isolation across applications and services that share a common
hardware platform. At the same time, VMs can improve the system-
wide utilization efficiency and provide lower overall operation
cost of the system. With the advent of low-cost minicomput-
ers and personal computers, the need for virtualization declined
(Figueiredo et al., 2005). As growing interest in improving the uti-
lization of computing resources through server consolidation, VM
technology is regaining the spotlight again and is widely used
in many fields. Now, there are many virtual machine monitors
(VMMs) such as VMware (Sugerman et al., 2001), Virtual PC, UML,
and Xen (Barham et al., 2003). Among them, Xen develops a tech-
nique known as para-virtualization (Whitaker et al., 2002), which
offers virtualization with low-overhead and has attracted much
attention from both the academic VM and the enterprise market.

∗ Corresponding author. Tel.: +86 10 8233 9020.
E-mail addresses: byb@buaa.edu.cn (Y. Bai), mayao@cse.buaa.edu.cn (Y. Ma).

However, para-virtualized approach has its intrinsic shortcoming
that it has to modify the OS kernel on it to recuperate the proces-
sor’s virtualization holes. To implement full-virtualization (Adams
and Agesen, 2006) on x86 platform, some processor manufactur-
ers propose their own hardware assisted technologies to support
full virtualization such as Intel’s VT technology, and AMD’s Pacifica
technology.

In spite of the recent advance in the VM technology, virtual
network performance remains a major challenge (Menon et al.,
2006). Some researches done by Menon et al. (2005) show that
Linux guest domain has far lower network performance than native
Linux in the scenarios of inter-VM communication. The communi-
cation performance between two processes in their own VMs on
the same physical machine is even worse than expected, which
is mainly due to the virtualization technology’s central character-
istic of isolation. For example, a distributed HPC application may
have two processes running in different VMs that need to com-
municate using messages over MPI libraries. Another example is
network transaction. In order to satisfy a client transaction request,
a web service running in one VM may need to communicate with a
database server which is running in another VM. Even routine inter-
VM communication, such as file transfers, may need to cross the
isolation barrier frequently. In the examples above, we would like

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.08.054

dx.doi.org/10.1016/j.jss.2012.08.054
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:byb@buaa.edu.cn
mailto:mayao@cse.buaa.edu.cn
dx.doi.org/10.1016/j.jss.2012.08.054

368 Y. Bai et al. / The Journal of Systems and Software 86 (2013) 367– 376

to use a direct and high performance communication mechanism,
which can minimize the communication latency and maximize the
throughput.

In this paper, basing on the research about virtualization
technology and multi-core technology, we combine the two tech-
nologies and propose a high performance inter-VM communication
method. The rest of this paper is organized as follows: Motivation of
this work is described in Section 2. Section 3 gives a brief view of Xen
network background. Section 4 presents the related work. Section
5 presents the design and implementation of inter-VM communi-
cation method (IVCOM) as well as the extension to hardware-based
virtual machine. Section 6 discusses the overhead and the detailed
performance evaluation of IVCOM in para-virtualization. Section 7
shows the experiments in full-virtualization. Section 8 draws the
conclusion.

2. Motivation

While enforcing isolation is an important requirement from the
viewpoint of security of individual software components, it also
can result in significant communication overhead because different
software components also need to communicate with each other
across the isolation barrier to achieve application objectives in spe-
cific scenarios. We take Xen as an example, and analyze it to find
out the reason for communication performance loss.

Xen is an open source hypervisor running between hardware
and operating systems (OS). It virtualizes all resources over the
hardware and provides the virtualized resources to OS running
on Xen. Each OS is called a guest domain or domain U, and the
only one privileged OS for hosting the application level man-
agement software is called domain 0. Now, Xen supports two
virtualization ways: full-virtualization and para-virtualization. It
can provide virtual machine performance close to a native one by
para-virtualization.

In para-virtualization, Xen exports virtualized network devices
to each domain U replacing the actual network drivers that can
interact with the real network card within domain 0. Domain 0
communicates with Domain U by means of a split network driver
architecture shown in Fig. 1.

The domain 0 hosts the backend of the split network driver
called netback, and the domain U hosts the frontend called net-
front. They interact by using high-level network device abstraction
rather than low-level network hardware specific mechanisms.
The split drivers communicate with each other through two
producer–consumer ring buffers. The ring buffers are a standard
lockless shared memory data structure built on grant table and
event channels which are two primitives in Xen architecture.

The grant table can be used to share pages between domain U
and domain 0. The frontend of the split driver in domain U can
notify Xen hypervisor that a memory page can be shared with
domain 0. Domain U then passes a grant table reference through
the event channel to domain 0 that copies data to or from the mem-
ory page of domain U. Once completing the page access, domain U
removes the grant reference. Page sharing is useful for synchronous
I/O operations such as sending packets through a network device.
Meanwhile, domain 0 may not know the destination domain for an
incoming packet until the entire packet has been received. In this
situation, domains 0 will first DMAs the packet into its own mem-
ory page. Then, domain 0 can choose to copy the entire packet to the
domain U′ memory. If the packet is large, domain 0 will notify Xen
hypervisor that the page can be transferred to the target domain
U. The domain U then initiates a transfer of the received page and
returns a free page back to hypervisor for the next one.

In full-virtualization, Intel VT technology defines two modes:
root mode and non-root mode for virtual machines. In root mode,
virtual machine has the whole privilege and full control of the

processor(s) and other platform hardware. In non-root mode,
virtual machine can only operate with limited privilege. Corre-
sponding to two modes, VT provides a new form of processor
operation called virtual machine extension (VMX) operation. There
are two kinds of VMX operation: VMX root operation and VMX non-
root operation. In general, a VMM will run in VMX root operation
and guest software will run in VMX non-root operation. The tran-
sition between VMX root operation and VMX non-root operation
is called VMX transition. There are two kinds of VMX transitions.
Transition into VMX non-root operation is called VM entry. Transi-
tion from VMX non-root operation to VMX root operation is called
VM exit.

In Xen, domain 0 runs in root mode and Hardware Virtualization
based VM (HV2M) runs in non-root mode. When applications in
HV2M need to access hardware resources such as IO devices, VMX
transition will occur. First of all, the current running scene will be
saved into a virtual machine control structure (VMCS), and the root
mode scene will be load from it. By this way, the HV2M domain
is scheduled out and domain 0 is scheduled in. Then it is time for
handling the real IO request by device module. After that, domain
0 is scheduled out and the domain switches back to HV2M. After
analysing the process of VMX transition, we can find the actual IO
handle cost only take little part in the total overhead in one switch.
As all privileged access such as IO access or interrupt will be handled
in this way, the performance of HV2M degrades about 10–30%.

By detailing the network communication process between VMs
in para-virtualization, we can find that there is no direct commu-
nication channel between guest VMs and all communications need
to be forwarded by domain 0 which decrease both the performance
of the communication between guest VMs and the performance of
domain 0.

In full-virtualization, the communication between VMs under
different modes is not smooth. Ideally, we would like that the com-
munication between VMs on the same physical machine should be
simple and direct, and has high performance. Therefore, we propose
a new communication method that can set up direct communica-
tion channel between VMs.

3. Related work

There have been some researches to improve the inter-VM
communication performance in virtualization environment. For
example, XWay (Kim et al., 2008), XenSockets (Zhang et al., 2007)
and IVC (Huang et al., 2007) have developed tools that are more effi-
cient than traditional communication path that needs to via domain
0. XWay provides transparent inter-VM communication for TCP-
oriented applications by intercepting TCP socket calls beneath the
socket layer. It requires extensive modifications to the implemen-
tation of network protocol stack in the core OS, since Linux does
not seem to provide a transparent netfilter-type hooks to intercept
messages above TCP layer. XenSockets is a one-way communica-
tion pipe between two VMs, which is based on shared memory.
It defines a new kind of socket, with associated connection estab-
lishment and read–write system calls that provide interface to the
underlying inter-VM shared memory communication mechanism.
In order to use these calls, user applications and libraries need to
be modified. XenSockets is suitable for applications that are high
throughput distributed stream systems, in which latency require-
ment is relaxed, and that can perform batching at the receiver side.
IVC is a user level communication library intended for message
passing HPC applications. It can provide shared memory communi-
cation across VMs that reside within the same physical machine. It
also provides a socket-style user-API, through which an IVC aware
application or library can be written. IVC is beneficial for HPC appli-
cations that can be modified to explicitly use the IVC API. In other

Download	English	Version:

https://daneshyari.com/en/article/10342517

Download	Persian	Version:

https://daneshyari.com/article/10342517

Daneshyari.com

https://daneshyari.com/en/article/10342517
https://daneshyari.com/article/10342517
https://daneshyari.com/

