
The Journal of Systems and Software 86 (2013) 412– 436

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

Constraint-based specification of model transformations

K. Lano ∗, S. Kolahdouz-Rahimi
Department of Informatics, King’s College London, United Kingdom

a r t i c l e i n f o

Article history:
Received 4 August 2011
Received in revised form 20 June 2012
Accepted 4 September 2012
Available online 25 September 2012

Keywords:
Model transformations
Model-driven development
Software synthesis

a b s t r a c t

Model transformations are a central element of model-driven development (MDD) approaches. The cor-
rectness, modularity and flexibility of model transformations is critical to their effective use in practical
software development. In this paper we describe an approach for the automated derivation of correct-by-
construction transformation implementations from high-level specifications. We illustrate this approach
on a range of model transformation case studies of different kinds (re-expression, refinement, qual-
ity improvement and abstraction transformations) and describe ways in which transformations can be
composed and evolved using this approach.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Model transformations are an essential part of development
approaches such as model-driven architecture (MDA) (OMG, 2004)
and model-driven development (MDD) (Gerber et al., 2002).
Model-transformations are becoming large and complex and
business-critical systems in their own right, and so require sys-
tematic development. In particular there is a need to verify the
syntactic and semantic correctness of transformations, and to sup-
port evolution required by evolution of the languages which the
model transformation operates on.

At present, a large number of different model transforma-
tion approaches exist, such as graph transformations (e.g., Viatra
(OptXware, 2010)), declarative (QVT-Relations (OMG, 2005)),
imperative (QVT-Operations, Kermeta (Kermeta, 2010)) and hybrid
(ATL (Jouault and Kurtev, 2006)) languages (Czarnecki and Helsen,
2006). These are all primarily based around the concept of transfor-
mation rules, which define individual steps within a transformation
process. The overall effect of a transformation is then derived
from the implicit (QVT-Relations, ATL) or explicit (Kermeta, QVT-
Operations, Viatra) combination of individual rule applications.
These descriptions are closer to the level of designs, rather than
specifications, and are also specific to particular languages, i.e., they
are PSMs (platform-specific models) in terms of the MDA.

However for effective verification and reuse of transforma-
tions a higher level of structuring and specification is required,
to define the complete behaviour of a transformation as a (black-
box) process, for example, by pre and postconditions. This level
of specification also provides support for the correct external

∗ Corresponding author. Tel.: +44 02078482832; fax: +44 02078482851.

composition of transformations, such as by the sequential chaining
of transformations.

In this paper we will describe the following components of a
systematic approach for specifying and developing model trans-
formations to address these problems:

- A general model-driven development process for model trans-
formations (Appendix B) based upon a formal semantics for UML
and transformations (Appendix A).

- Specification of model transformations using OCL constraints and
UML class diagrams (Section 2).

- Automated design and implementation strategies for these spec-
ifications. We give proofs of correctness of these strategies
(Section 3).

- Structuring and composition techniques for specifications, to
enable the effective evolution of transformations in response to
evolving metamodels or changes in requirements (Section 4).

To minimise development costs, we implement transformation
specifications by the automated derivation of (correct by con-
struction) designs and executable implementations. This process
has been implemented as part of the UML-RSDS toolset for MDD
using UML. It could also be applied to other model transformation
approaches, such as QVT or ATL.

Section 5 evaluates the approach. Section 6 describes related
work, and Section 7 summarises the paper.

1.1. Categories of model transformation

Model transformations can be classified in different ways
(Czarnecki and Helsen, 2006; Mens et al., 2005). At a syntactic
level, we can differentiate between those transformations where

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.09.006

dx.doi.org/10.1016/j.jss.2012.09.006
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
dx.doi.org/10.1016/j.jss.2012.09.006

K. Lano, S. Kolahdouz-Rahimi / The Journal of Systems and Software 86 (2013) 412– 436 413

the source and target languages S and T are entirely disjoint, or
where they overlap, or where one is a sub-language of the other.
Transformations may be update-in-place, i.e., they operate on a sin-
gle model and produce the target model by modifying elements
of the source model, or separate models if the source and target
are distinct. The latter are also termed input-preserving if they do
not modify the source model. Endogenous transformations have the
same source and target language, whilst exogenous transformations
have distinct languages (Czarnecki and Helsen, 2006).

Semantically, a transformation can be classified in terms of its
role in a development process:

Refinement A transformation that replaces source model ele-
ments by target elements or structures to map an abstract
model (such as a PIM) to a more specific version (such as
a PSM).

Abstraction A transformation that produces an abstraction of a
model, e.g., by discarding some details of the source model
data.

Quality improvement/Restructuring A transformation that
produces a target model at the same abstraction level
as the source, but that re-organises a model to achieve
some quality goal (e.g., removing duplicated attributes
from a class diagram). Usually these are update-in-place
and endogenous.

Re-expression A transformation that maps a model in one lan-
guage into its equivalent in another language at the same
level of abstraction, eg, migration transformations from
one version of a language to another version.

We will consider the following examples of transformations
from these categories:

- The well-known UML to relational database refinement transfor-
mation (OMG, 2010; Lano and Kolahdouz-Rahimi, 2011a), and the
refinement example of Kurtev et al. (2006).

- A quality improvement restructuring to remove duplicated
attributes from a class diagram (Kolahdouz-Rahimi et al.,
submitted for publication).

- Re-expression transformations to compute the transitive closure
of a graph (Lano and Kolahdouz-Rahimi, 2011b) and of an associ-
ation (Section 4.3).

These will be used to illustrate the development process and trans-
formation patterns.

2. Model transformation specification

In this section and the following section we describe how the
general model transformation development process of Lano and
Kolahdouz-Rahimi (2011a) can be implemented in UML-RSDS.
UML-RSDS is a model-driven development approach which has the
following general principles:

- Systems are specified using declarative UML models and OCL con-
straints, at a CIM (computationally independent model) level,
where possible.

- Designs and executable implementations are automatically
derived by means of verified transformations, so that they are
correct-by-construction with respect to the specification. Alter-
natively, developers can write explicit designs at a PIM level,
similar to QVT-Operations or Kermeta in style.

- Capabilities for formal analysis are provided, for use by spe-
cialised users.

As an approach to transformation specification, this means that
transformations are specified purely using UML notations, with no
additional specialised syntax required.

Each transformation � : S → T from a source language S to a tar-
get language T is defined as a UML use case (Chapter 16 of OMG,
2009), with a set Asm of assumptions, which are the preconditions
of the use case (ie, the precondition of the BehavioralFeature associ-
ated to the use case), and a set Cons of postconditions. Additional
conditions Ens for the poststate should follow from Cons. Invariants
Inv may be defined for the use case. The predicates Asm, Cons, Inv
and Ens may involve both languages S and T.

Logically, the transformation is interpreted as achieving the
conjunction of the postconditions, under the assumption that the
conjunction of the preconditions holds at its initiation. Proce-
durally, the postcondition constraints Cn can be interpreted as
transformation rules or statements stat(Cn) which establish Cn
(Appendix C).

The precondition constraints Asm define checks which should
be carried out on the source model, whilst the postconditions Cons
also define consistency conditions that should hold (and be main-
tained) between the source and target models as a result of the
transformation.

The structure and organisation of the constraints will be used to
automatically derive the design and implementation of the trans-
formation.

An example of such constraint-based specification is the
well-known UML to relational database transformation. This trans-
formation maps a data model expressed in UML class diagram
notation into the more restricted data modelling language of rela-
tional database schemas. Modelling aspects such as inheritance and
associations are removed from the source model and their seman-
tics expressed instead using the language facilities (tables, primary
keys and foreign keys) of relational databases.

Fig. 1 shows the source (on the left hand side) and target (on the
right) metamodels. Asm consists of assertions that attribute names
are unique within a class, that class and association names are
unique within a package, and so forth (Lano and Kolahdouz-Rahimi,
2011a).

The transformation is defined as a use case operating on instance
models of these metamodels. The formal specification Cons of the
transformation as a global relation between the source and target
languages can be defined by six postcondition constraints of the use
case, of which the following three define the basic transformation
of attributes to columns and classes to tables:

C1 “For each persistent attribute in the source model there is a
unique column in the target model, of corresponding type”:

∀ a: Attribute · a.owner.kind = “Persistent” implies

∃cl: Column · cl.rdbId = a.umlId and

cl.name = a.name and cl.kind = a.kind and

(a.type.name = “Integer” implies cl.type = “NUMBER”) and

(a.type.name = “Boolean” implies cl.type = “BOOLEAN”) and

(a.type.name /= “Integer” and a.type.name /= “Boolean” implies

cl.type = “VARCHAR”)

C2 “For each persistent class in the source model, there is a unique
table representing the class in the target model, with columns
for each owned attribute”:

∀ c: Class · c.kind = “Persistent” implies

∃t: Table · t.rdbId = c.umlId and t.name = c.name and

t.kind = “Persistent” and

Column[c.attribute.umlId] ⊆ t.column

Download English Version:

https://daneshyari.com/en/article/10342521

Download Persian Version:

https://daneshyari.com/article/10342521

Daneshyari.com

https://daneshyari.com/en/article/10342521
https://daneshyari.com/article/10342521
https://daneshyari.com

