
The Journal of Systems and Software 85 (2012) 1346– 1362

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

Mining frequent patterns from dynamic data streams with data load
management�

Chao-Wei Li, Kuen-Fang Jea ∗, Ru-Ping Lin, Ssu-Fan Yen, Chih-Wei Hsu
Department of Computer Science and Engineering, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, ROC

a r t i c l e i n f o

Article history:
Received 1 November 2010
Received in revised form 8 August 2011
Accepted 13 January 2012
Available online 24 January 2012

Keywords:
Data mining
Data streams
Frequent patterns
Combinatorial approximation
Overload handling
Load shedding

a b s t r a c t

In this paper, we study the practical problem of frequent-itemset discovery in data-stream environments
which may suffer from data overload. The main issues include frequent-pattern mining and data-overload
handling. Therefore, a mining algorithm together with two dedicated overload-handling mechanisms
is proposed. The algorithm extracts basic information from streaming data and keeps the information
in its data structure. The mining task is accomplished when requested by calculating the approximate
counts of itemsets and then returning the frequent ones. When there exists data overload, one of the
two mechanisms is executed to settle the overload by either improving system throughput or shedding
data load. From the experimental data, we find that our mining algorithm is efficient and possesses
good accuracy. More importantly, it could effectively manage data overload with the overload-handling
mechanisms. Our research results may lead to a feasible solution for frequent-pattern mining in dynamic
data streams.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays many commercial applications have their data
presented in the form of continuously transmitted stream,
namely data streams. In such environments, data is generated
at some end nodes or remote sites and received by a local
system (to be processed and stored) with continuous trans-
mission. It is usually desirable for decision makers to find
out valuable information hidden in the stream. Data-stream
mining is just a technique to continuously discover useful infor-
mation or knowledge from a large amount of running data
elements. Like data mining in traditional databases, the subjects
of data-stream mining mainly include frequent itemsets/patterns,
association rules (Agrawal and Srikant, 1994), sequential rules, clas-
sification, and clustering. Through the data-stream mining process,
knowledge contained inside the stream can be discovered in a
dynamic way.

Data mining from data streams has three kinds of time mod-
els (or temporal spans) (Zhu and Shasha, 2002). The first one is
landmark window model, in which the range of mining covers
all data elements that have ever been received. The second one
is damped/fading window model, in which each data element is

� This research is supported in part by NSC in Taiwan, ROC under Grant No. NSC
98-2221-E-005-081.

∗ Corresponding author. Tel.: +886 4 22840497x906; fax: +886 4 22852396.
E-mail address: kfjea@cs.nchu.edu.tw (K.-F. Jea).

associated with a variable weight, and recent elements have higher
weights than previous ones. The third one is sliding window model,
in which a fixed-length window which moves with time is given,
and the range of mining covers the recent data elements con-
tained within the window. Due to the fact that early received data
elements may become out of date and/or insignificant, i.e., the time-
liness factor, among the three models, the sliding window model
is more appropriate for many data-stream applications such as
finance, sales, and marketing.

A data-stream mining system may suffer the problem of data
overload, just like the case of over-demand electricity to a power
supply system. A data stream is usually dynamic and its running
speed may change with time. When the data transmission rate
of the data-stream source exceeds the data processing rate of the
mining algorithm of a mining system, e.g., during a peak period,
the system is overloaded with data and thus unable to handle all
incoming data elements properly within a time-unit. Furthermore,
an overloaded system may work abnormally or even come into a
crash. Accordingly, it is essential for a data-stream mining system
to adequately deal with data overload and/or spikes in volume.

In this paper, we propose a load-controllable mining algorithm
for discovering frequent patterns in transactional data streams. The
mining algorithm works on the basis of combinatorial approximation
(Jea and Li, 2009). To address the possible case of peak data-
load at times, two dedicated overload-handling mechanisms are
designed for the algorithm to manage overload situations with their
respective means. With the load-controllable ability, a mining sys-
tem with the proposed algorithm is able to work normally during

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2012.01.024

dx.doi.org/10.1016/j.jss.2012.01.024
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:kfjea@cs.nchu.edu.tw
dx.doi.org/10.1016/j.jss.2012.01.024

C.-W. Li et al. / The Journal of Systems and Software 85 (2012) 1346– 1362 1347

high-data-load periods. Besides, according to our experimental
data, the mining results (after overload handling) still possess rea-
sonable quality in term of accuracy.

The rest of this paper is organized as follows. In Section 2,
related work regarding data-stream frequent-pattern mining and
data-overload handling is described. Section 3 gives the symbol
representation, problem definition, and goal of this research. In
Section 4, a mining algorithm together with two overload-handling
mechanisms is proposed and explained in detail. Section 5 presents
the experimental results with analyses. In Section 6, discussions
are given on the overload-handling mechanisms. Finally, Section 7
concludes this work.

2. Related work

Frequent-pattern mining from data streams is initially limited
to singleton items (e.g., Charikar et al., 2004; Fang et al., 1998).
Lossy Counting (Manku and Motwani, 2002) is the first practical
algorithm to discover frequent itemsets from transactional data
streams. This algorithm works under the landmark window model.
In addition to the minimum-support parameter (ms), Lossy Count-
ing also employs an error-bound parameter, ε, to maintain those
infrequent itemsets having the potential to become frequent in
the near future. Lossy Counting processes the stream data batch by
batch, and each batch includes bucket(s) of transactions. With the
use of parameter ε, when an itemset is newly found, Lossy Counting
knows the upper-bound of count that itemset may have before it
has been monitored. As a result, the error in itemset’s frequency
count is limited and controllable. According to the experiments
conducted by Manku and Motwani (2002), Lossy Counting can
effectively find frequent itemsets over a transactional data stream.
This algorithm is a representative of the ε-deficient mining methods
and has many related extensions. For example, based on the esti-
mation mechanism of Lossy Counting, a sliding window method for
finding recently frequent itemsets in a data stream is proposed by
Chang and Lee (2004).

A different type of method is to process on stream elements
within a limited range and offer no-false mining answers. DSTree
(Leung and Khan, 2006) is a representative approach of one such
type, which is designed for exact (stream) mining of frequent item-
sets under the sliding window model. Given a sliding window,
DSTree uses its tree structure for capturing the contents of transac-
tions in each batch of data within the current sliding window. More
specifically, DSTree enumerates all itemsets (of any length) having
ever occurred in transactions within the current window and main-
tains them fully in its tree structure. The update of tree structure is
performed on every batch, while the mining task is delayed until it
is needed. According to the experimental results given by Leung and
Khan (2006), mining from DSTree achieves 100% accuracy (since all
itemsets having ever occurred are stored and monitored). However,
because this method needs to enumerate every itemset in each of
the transactions, its efficiency is badly affected by the great com-
putation complexity. As a result, it can hardly manage with a data
stream consisting of long transactions.

Besides DSTree, there are other methods belonging to the
type of exact stream mining. Li and Lee (2009) proposed a
bit-sequence based, one-pass algorithm, called MFI-TransSW, to
discover frequent itemsets from data-stream elements within a
transaction-sensitive sliding window. Every item of each transac-
tion is encoded in a bit-sequence representation for the purpose
of reducing the time and memory necessary for window sliding;
to slide the window efficiently, MFI-TransSW uses the left bit-shift
technique for all bit-sequences. In addition, Tanbeer et al. (2009)
proposed an algorithm called CPS-tree, which is closely related to
DSTree, is proposed to discover the recent frequent patterns from a
data stream over a sliding window. Instead of maintaining the batch

information (of the sliding window) at each node of the tree struc-
ture (as DSTree does), CPS-tree maintains it only at the last node
of each path to reduce the memory consumption. The authors also
introduce the concept of dynamic tree restructuring to produce a
compact frequency-descending tree structure during runtime.

Another type of method is to perform the mining task, i.e., dis-
cover frequent itemsets, through a support approximation process.
One feasible approach is to apply the idea of Inclusion–Exclusion
Principle in combinatorial mathematics (Liu, 1968), whose general
form is shown in Eq. (1), to data-mining domain for sup-
port calculation, and further apply the theory of Approximate
Inclusion–Exclusion (Linial and Nisan, 1990) for approximate-count
computation. This mining approach is called CA (combinatorial
approximation). The DSCA algorithm (Jea and Li, 2009) is a typical
example of such an approach. DSCA operates under the landmark
window model and monitors all itemsets of lengths 1 and 2 existing
in the data stream. It performs the mining task by approximating
the counts of longer itemsets (based on the monitored itemsets)
and returning the frequent ones as the mining outcome. According
to the experimental data given by Jea and Li (2009), the perfor-
mance of DSCA is quite efficient. Besides DSCA, the SWCA algorithm
(Li and Jea, 2011) is also an example of CA-based approach. This
method is under the sliding window model and has made an effort
to improve the accuracy of support approximation.

|A1 ∪ A2 ∪ . . . ∪ Am| =
∑

i

|Ai| −
∑
i<j

|Ai ∩ Aj| +
∑

i<j<k

|Ai ∩ Aj ∩ Ak|

+ · · · + (−1)m+1|A1 ∩ A2 ∩ . . . ∩ Am| (1)

In the electrical utility industry, load shedding, an intentionally
engineered electrical power outage, is a last resort measure used
by an electric utility company in order to avoid a total blackout of
the power system. It is usually in response to a situation where
the demand for electricity exceeds the power supply capability
of the network. In the data-stream mining domain, many data-
stream sources are prone to dramatic spikes in volume (Babcock
et al., 2003). Because the peak load during a spike can be orders
of magnitude higher than normal loads, fully managing a data-
stream mining system to handle the peak load is almost impractical.
Therefore, it is important for mining systems which process data
streams to be adaptable to unanticipated variations in data trans-
mission rate. An overloaded mining system is unable to manage on
its own with all incoming data promptly, so data-overload handling,
or simply overload handling, such as discarding some unprocessed
data (i.e., load shedding) becomes necessary for the system to be
durable.

The Loadstar system proposed by Chi et al. (2005) introduces
load shedding techniques to classifying multiple data streams of
large volume and high speed. Loadstar employs a metric known
as the quality of decision (QoD) to measure the level of uncertainty
in classification. When sources are in competition with each other
for resources, the resources are allocated to the source(s) where
uncertainty is high. In order to make optimal classification deci-
sions, Loadstar relies on feature prediction to model the dropped and
unseen data, and thus can adapt to the changing characteristics in
data streams. Experimental results show that Loadstar offers a nice
solution to data-stream classification with the presence of system
overload.

To our knowledge, there are no representative studies concern-
ing overload-handling schemes/mechanisms for frequent-pattern
mining in data streams so far. However, the work conducted by
Jea et al. (2010) has made a preliminary attempt. In the paper, a
data-stream frequent-itemset mining system is proposed where
the mining algorithm is a Lossy Counting based method. The sys-
tem finds frequent itemsets from the data within a sliding window.

Download English Version:

https://daneshyari.com/en/article/10342560

Download Persian Version:

https://daneshyari.com/article/10342560

Daneshyari.com

https://daneshyari.com/en/article/10342560
https://daneshyari.com/article/10342560
https://daneshyari.com

