
An architectural approach with separation of concerns to address
extra-functional requirements in the development of embedded
real-time software systems

Marco Panunzio ⇑, Tullio Vardanega
Department of Mathematics, University of Padova, via Trieste 63, 35121 Padova, Italy

a r t i c l e i n f o

Article history:
Received 16 February 2012
Received in revised form 22 March 2014
Accepted 9 June 2014
Available online 19 June 2014

Keywords:
Embedded real-time systems
Extra-functional properties
Software architecture
Component-based software engineering
Separation of concerns

a b s t r a c t

A large proportion of the requirements on embedded real-time systems stems from the extra-functional
dimensions of time and space determinism, dependability, safety and security, and it is addressed at the
software level. The adoption of a sound software architecture provides crucial aid in conveniently appor-
tioning the relevant development concerns. This paper takes a software-centered interpretation of the
ISO 42010 notion of architecture, enhancing it with a component model that attributes separate concerns
to distinct design views. The component boundary becomes the border between functional and extra-
functional concerns. The latter are treated as decorations placed on the outside of components, satisfied
by implementation artifacts separate from and composable with the implementation of the component
internals. The approach was evaluated by industrial users from several domains, with remarkably posi-
tive results.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Embedded real-time systems in general are characterized by
two distinctive features: (1) they are resource-constrained, since
most often only scarce processing power and memory space are
available; and (2) the growing incidence of requirements that
address concerns over and above system functionality, in the
dimensions of time and space determinism, dependability, safety
and, increasingly, security [1].

In this work we collectively refer to those requirements as
extra-functional, to signify that, while they do not concur to the
functional activity of the system, they crucially contribute to the
ultimate quality of the system. We also use the term property for
a feature of an implementation item that provably meets a require-
ment placed on the specification of that feature. We therefore have
extra-functional requirements and extra-functional properties. In
this paper we refer to the latter by the shorthand EFP.

Understanding, providing and asserting EFP has an increasingly
large and costly effort footprint on the development process in a
variety of application domains. The embedded real-time software

systems industry therefore seeks ways to accommodate attention
for EFP in their otherwise consolidated development practices
without breaking the integrity of the overall process.

The central tenet of this work is that the adoption of a sound
software architecture helps achieve a clear-cut and composable
apportionment of development concerns. With that, EFP can be
addressed aside from, yet in coordination with, the functional
dimension, in keeping with the established principle of separation
of concerns [2].

Interestingly, once the step is taken to put the software archi-
tecture at the center of the development strategy, product line con-
cerns can be accommodated by elevating that notion to the
stipulation of a reference software architecture. We draw from [3]
that the reference software architecture is a common and agreed
architectural framework capable of addressing all the relevant
industrial needs, providing a recurrent solution to the develop-
ment of a certain class of software systems. To that we add the
capability of operating as a single and consistent basis for address-
ing EFP.

This paper reports on the lessons learned in pursuit of that
vision in a large and encompassing research program that pro-
gressed along two parallel and complementary lines. One line of
the research took place as part of an initiative launched by the
European Space Agency (ESA) targeting the definition and realiza-

http://dx.doi.org/10.1016/j.sysarc.2014.06.001
1383-7621/� 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

⇑ Corresponding author. Tel.: +39 0498271359.
E-mail addresses: panunzio@math.unipd.it (M. Panunzio), tullio.vardanega@

math.unipd.it (T. Vardanega).

Journal of Systems Architecture 60 (2014) 770–781

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.06.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.sysarc.2014.06.001
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:panunzio@math.unipd.it
mailto:tullio.vardanega@ math.unipd.it
mailto:tullio.vardanega@ math.unipd.it
http://dx.doi.org/10.1016/j.sysarc.2014.06.001
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


tion of a reference software architecture that should steer the
development of on-board software for satellites across all of its
software supply chain, using the component-based approach
described in [4,5]. That initiative started from the capture of all
product-line needs by the domain stakeholders and concluded
with their validation mapping to the chosen reference software
architecture. The other line of research occurred within the ARTE-
MIS JU CHESS project1 (‘‘Composition with Guarantees for High-
integrity Embedded Software Components Assembly’’ 2009–2012),
which aimed at the realization of a model-based component-ori-
ented approach for the development of embedded real-time soft-
ware systems for telecom, space, and railway applications [6]. All
industrial parties from both actions subscribed from the outset to
the principle of addressing EFP separately from the functional
dimension. In doing so, they were witness to the unifying power of
the software architecture concept and to the evidence that EFP were
indeed addressed at a distinct level of abstraction as well as at a dis-
tinct step in the development process, in overlay to the functional
specification of the software.

The remainder of the paper is organized as follows. Section 2
recalls the essential aspects captured in the concept of software
architecture and argues why that concept is useful to address con-
cerns in dimensions other than functional. That discussion pro-
ceeds into an original interpretation of the notion of reference
software architecture and of its founding principles. Section 3
relates the work presented in this paper with state-of-the-art
approaches that address similar goals. Section 4 describes the
essential details of the proposed approach, with special focus on
the way it assists the specification and assures the fulfilment of
the extra-functional properties expected of the system. Section 5
presents an instantiation of the reference software architecture
to a variety of industrial domains, and discusses how it meets
the stakeholders’ needs captured as part of the research effort.
Section 6 discusses four extensive industrial case studies on which
the approach presented in this paper was applied and successively
evaluated. Section 7 draws some conclusions and outlines future
work.

2. The role and potential of the software architecture

2.1. Common understanding

At odds with its intrinsic centrality, the software engineering
practice harbors an exceedingly informal and liberal interpretation
of the concept of software architecture. Most practitioners regard
software architecture as a synonym to software design: reference
[7] collects a large set of community definitions that portray the
confusion. In actual fact, the software architecture is a much larger
scope than that, with ample bearing on the principles that guide
the design and evolution of the software system. The definition
given in IEEE 1471, later promoted to ISO 42010 [8] clarifies, to
our satisfaction, that an architecture is ‘‘the fundamental organiza-
tion of a system embodied in its components, their relationships to
each other, and to the environment, and the principles guiding its
design and evolution’’. When applied to software systems, the def-
inition of software architecture captures well the following
concerns:

� Software decomposition: the organization of the software in
terms of parts, so that every individual part has its own archi-
tectural cohesiveness (it addresses a single well-defined part
of the problem), and the interactions between parts are mini-
mized so as to reduce unnecessary dependencies (i.e., coupling),

hence reducing incidental complexity of understanding, verifi-
cation and validation, operation and maintenance;
� Externally visible attributes of software ‘‘components’’: those attri-

butes represent features or needs that are specific to individual
components yet can influence other parts of the software or
determine properties of the whole. The other attributes, if
any, shall remain as (externally invisible) internal details and
will not be used for the overall reasoning at the level of the soft-
ware architecture;
� Relationship between software ‘‘components’’: how components

relate to one another in providing services and fulfilling needs;
� Extra-functional concerns: the abstraction level at which extra-

functional concerns are to be addressed;
� External interfaces: the way the software interacts with the

external environment (e.g., by commanding sensors or actua-
tors, or serving external interrupts);
� Principles for the development and evolution of the software: the

software design process that fixes the rules for development,
maintenance and evolution, and dictates the supported form
of software reuse;
� The rules in place to warrant the consistent relationship between

all of the above concerns: a methodology capable of encompass-
ing and consistently harmonizing all the aspects listed above;
additionally, the methodology shall provide criteria to deter-
mine whether a software part can be included in the system,
as it conforms to the principles sustained by the architecture,
or it shall be rejected, as its inclusion would break system
integrity.

A reference software architecture prescribes the concrete form of
the software architectures that shape the specific systems for which
it was originally developed. The reference software architecture can
thus be regarded as a sort of ‘‘generic’’ software architecture that
prescribes the founding principles, the underlying methodology
and the architectural practices recognized by the domain stakehold-
ers as the baseline solution to the construction of a certain class of
software systems in that domain. Symmetrically, the software
architecture of one particular system for a given domain can then
be regarded as an ‘‘instantiation’’ to the specific system needs of
the reference software architecture for that domain.

2.2. Narrowing to our context

The reference software architecture chosen for the ESA initia-
tive – and later reflected in the whole span of investigation covered
in this work – has a number of distinctive features, which are best
introduced here before proceeding further.

First of all, the reference software architecture includes a com-
panion component-oriented development methodology. Software
systems in the industrial domains that adopt that methodology
are therefore developed by defining (or reusing) components
and by creating assemblies of them. The interpretation of compo-
nents varies with the specific goals of the approach they serve.
Numerous definitions for them indeed exist [9–11]. Suffice it to
say for now that a component is the unit of design and of encap-
sulation of our approach: we return to this definition later in this
paper.

Secondly, the reference software architecture was formulated
so as to support the principle of separation of concerns. This is a
long-known but much neglected practice first advocated by
Dijkstra in [2], which strives to part the various aspects of software
design and implementation so as to enable separate reasoning and
focused specification for each of them. Separation of concerns is
applied to the component model that rests at the very core of
the reference software architecture. We consequently pursue it at
a level of abstraction much higher than programming, as done1 http://www.chess-project.org/.

M. Panunzio, T. Vardanega / Journal of Systems Architecture 60 (2014) 770–781 771

http://www.chess-project.org/


Download English Version:

https://daneshyari.com/en/article/10342952

Download Persian Version:

https://daneshyari.com/article/10342952

Daneshyari.com

https://daneshyari.com/en/article/10342952
https://daneshyari.com/article/10342952
https://daneshyari.com

