
The Journal of Systems and Software 85 (2012) 2228– 2240

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

Dependency solving: A separate concern in component evolution management�

Pietro Abatea, Roberto Di Cosmoa,b, Ralf Treinena, Stefano Zacchiroli a,∗

a Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, F-75205 Paris, France
b INRIA Paris-Rocquencourt, F-75205 Paris, France

a r t i c l e i n f o

Article history:
Received 5 December 2010
Received in revised form
27 December 2011
Accepted 7 February 2012
Available online 15 March 2012

Keywords:
Component
Dependency solving
Software evolution
Package management
Open source
Competition

a b s t r a c t

Maintenance of component-based software platforms often has to face rapid evolution of software com-
ponents. Component dependencies, conflicts, and package managers with dependency solving capabilities
are the key ingredients of prevalent software maintenance technologies that have been proposed to keep
software installations synchronized with evolving component repositories. We review state-of-the-art
package managers and their ability to keep up with evolution at the current growth rate of popular
component-based platforms, and conclude that their dependency solving abilities are not up to the task.

We show that the complexity of the underlying upgrade planning problem is NP-complete even for
seemingly simple component models, and argue that the principal source of complexity lies in multiple
available versions of components. We then discuss the need of expressive languages for user preferences,
which makes the problem even more challenging.

We propose to establish dependency solving as a separate concern from other upgrade aspects, and
present CUDF as a formalism to describe upgrade scenarios. By analyzing the result of an international
dependency solving competition, we provide evidence that the proposed approach is viable.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A program that is used and that as an implementation of its speci-
fication reflects some other reality, undergoes continual change or
becomes progressively less useful.

The above law of Continuing Change (Lehman, 1980) applies
to all evolving software systems, which are deemed to be the
vast majority of existing systems (Cook et al., 2006). The advent
of Component-Based Software Engineering (Brown and Wallnau,
1998; Szyperski, 1998) did not affect this fundamental truth:
mutatis mutandis continuing change also holds for component-
based systems (Lehman and Ramil, 2000). The diffusion of rapidly
evolving component-intensive software platforms—i.e. platforms
where the number of components is in the tens or even hundreds of
thousands—has raised the quality requirements for automatic tools
that maintain component installations on behalf of users, be them

� This work has been partially performed at IRILL http://www.irill.org.
∗ Corresponding author.

E-mail addresses: abate@pps.jussieu.fr (P. Abate), roberto@dicosmo.org
(R. Di Cosmo), treinen@pps.jussieu.fr (R. Treinen), zack@pps.univ-paris-diderot.fr
(S. Zacchiroli).

URLs: http://www.pps.jussieu.fr/∼abate (P. Abate), http://www.dicosmo.org
(R. Di Cosmo), http://www.pps.jussieu.fr/∼treinen/ (R. Treinen), http://upsilon.
cc/∼zack (S. Zacchiroli).

developers, architects, administrators, or final users empowered to
assemble components.

Component-intensive platforms are commonplace: FOSS (Free
and Open Source Software) distributions (where components are
called “packages”), development platforms like Eclipse and Apache
Maven (Des Rivières and Wiegand, 2004; Massol and O’Brien,
2005) (which call components “plugins”), OSGi (OSGi Alliance)
(“bundles”), CMS communities (“add-ons”), Web browsers (“exten-
sions”), and countless others. Despite apparent differences in
terminology, all these platforms share concepts, properties, and
problems. For instance, components have expectations on the
deployment context: they may need other components to func-
tion properly—declaring this fact by means of dependencies—and
may be incompatible with some other components—declaring this
fact by means of conflicts. Those expectations must be respected not
only at initial deployment-time, but also at each component release
and for each individual component: a new version of a component
cannot be deployed if its expectations are not met on the target
system.

To maintain component assemblies, (semi-)automatic com-
ponent manager applications are used to perform component
installation, removal, and upgrades on target machines—we use the
term upgrade to refer to any combination of those actions. Examples
of component managers are as commonplace as component-
intensive platforms: package managers, such as APT or Aptitude
used in FOSS distributions to manage packages; P2 (Le Berre
and Rapicault, 2009), used in Eclipse to deal with plugins; OSGi

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2012.02.018

dx.doi.org/10.1016/j.jss.2012.02.018
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://www.irill.org
mailto:abate@pps.jussieu.fr
mailto:roberto@dicosmo.org
mailto:treinen@pps.jussieu.fr
mailto:zack@pps.univ-paris-diderot.fr
http://www.pps.jussieu.fr/~abate (P. Abate)
http://www.dicosmo.org (R. Di Cosmo)
http://www.pps.jussieu.fr/~treinen/ (R. Treinen)
http://upsilon.cc/~zack (S. Zacchiroli)
http://upsilon.cc/~zack (S. Zacchiroli)
dx.doi.org/10.1016/j.jss.2012.02.018

P. Abate et al. / The Journal of Systems and Software 85 (2012) 2228– 2240 2229

Fig. 1. Unexpected behaviour while using the legacy Aptitude package manager,
on a FOSS system on the Debian GNU/Linux distribution. The user attempts to
upgrade all components in need of upgrade on a machine equipped with the GNOME
desktop environment and several packages. The dependency solver loops
and is unable to find a solution; after several attempts, the user gives up (see
http://bugs.debian.org/590470; retrieved November 29th, 2010).

resolvers, which perform component deployment and configu-
ration. These tools—called generically package managers in the
following—incorporate numerous functionalities: trusted retrieval
of components from remote repositories; planning of upgrade
paths in fulfillment of deployment expectations (also known as
dependency solving); user interaction to allow for interactive tun-
ing of upgrade plans; and the actual deployment of upgrades by
removing and adding components in the right order, aborting the
operation if problems are encountered at deploy-time (Di Cosmo
et al., 2008).

In contexts where the pace of component releases is rapid (e.g.
FOSS Raymond, 2001; Gonzalez-Barahona et al., 2009; Abate et al.,
2009) the quality demand on package managers, and in particu-
lar on dependency solving, is very high. Package managers should:
(1) devise upgrade plans that are correct (i.e. no plan that vio-
lates component expectations is proposed) and complete (i.e. every
time a suitable plan exists, it can be found); (2) have performances
that scale up gracefully at component repositories growth; (3)
empower users to express preferences on the desired component
configuration when several options exist, which is often the case.
Surprisingly, all mainstream component manager applications the
authors are aware of fail to address one or several of those concerns.
Not addressing them is far from being a purely academic exercise,
as Figs. 1 and 2 show. Although anecdotal those and similar exam-
ples, which populate the experience of everyday package manager
users, show that state-of-the-art component managers are short of
fulfilling the aforementioned requirements. Considering the recent
popularity of dependency-based abstractions in Component Based
Software Engineering (CBSE, e.g. Jenson et al., 2010; Schmid, 2010;
Di Cosmo and Zacchiroli, 2010), overlooking important dependency
solving requirements appears to be dangerous.

This work provides substantial coverage of concepts and prob-
lems that are common in component managers equipped with
automatic dependency solving abilities, for any non-trivial com-
ponent model. Understanding such problems is of paramount
importance because, in the context of component-intensive soft-
ware platforms, software evolution is observed by users through
the lens of component releases and often judged by the package
manager abilities to successfully deploy new releases. There-
fore, to avoid software evolution bottlenecks at the component
deployment stage, we need to improve the ability of our tools to
plan component upgrades. Unfortunately, as we will show, the

Fig. 2. Attempt to install a disk space monitoring utility (called baobab) using Apti-
tude. In response to the request, the package manager proposes to downgrade the
GNOME desktop environment all together to a very old version compared to what
is currently installed. As shown in Section 6 a trivial alternative solution exists that
minimizes system changes: remove a couple of dummy (or “meta”) packages.

problem is a hard one to tackle. In order to attack such a non-trivial
and fairly overlooked problem, this paper proposes to treat depen-
dency solving as a separate concern of component evolution and
details the formalisms and technologies that are needed to enable
such separation.

1.1. Paper contributions and structure

In Section 2 we present the upgrade planning problem, or sim-
ply upgrade problem, in a general setting, showing that in any
non-trivial component model dependency solving is NP-complete.
To tackle the problem, in Section 3 we propose to treat depen-
dency solving as a separate concern, in order to share research and
development efforts on upgrade planning. To that end, we need
formalisms to: (1) capture upgrade scenarios coming from differ-
ent component models in a unifying, well-defined semantics and
(2) describe user preferences which are advanced enough to cover
realistic use cases, but yet simple enough to be efficiently dealt
with by state-of-the-art constraint solvers. Our proposals for those
two formalisms are detailed in Sections 4 and 5. Section 6 validates
the proposed approach by discussing an international dependency
solving competition—called MISC—which has been run exploiting
the proposed formalisms. Competition results show that state-of-
the-art constraint solvers can easily outperform ad-hoc solvers
embedded in mainstream package managers, confirming the the-
sis that separation of concerns and reuse are not only feasible, but
also a viable strategy to improve upgrade planning and support
component evolution.

2. Component evolution and the complexity of the upgrade
problem

In this section we start by studying the complexity of the upgrade
problem that package managers for component-intensive software
platforms have to face. An important feature of the problem is that
there is usually a multitude of possible choices. This has two con-
sequences:

• For any given user request, there potentially exists an exponential
number of solution candidates, which makes the problem NP-
complete in all relevant cases (see Sections 2.1 and 2.2).

• There might be an exponential number of actual solutions to a
problem instance, and we need a good way to pick the best among
these solutions (see Section 2.3).

http://bugs.debian.org/590470

Download	English	Version:

https://daneshyari.com/en/article/10343171

Download	Persian	Version:

https://daneshyari.com/article/10343171

Daneshyari.com

https://daneshyari.com/en/article/10343171
https://daneshyari.com/article/10343171
https://daneshyari.com/

