
The Journal of Systems and Software 85 (2012) 2293– 2304

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

Controversy Corner

On the relationship between comment update practices and Software Bugs

Walid M. Ibrahim, Nicolas Bettenburg, Bram Adams∗, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL), School of Computing, Queen’s University, Ontario, Canada

a r t i c l e i n f o

Article history:
Received 4 December 2010
Received in revised form 22 May 2011
Accepted 11 September 2011
Available online 17 September 2011

Keywords:
Code quality
Software bugs
Software evolution
Source code comments
Empirical studies

a b s t r a c t

When changing source code, developers sometimes update the associated comments of the code (a
consistent update), while at other times they do not (an inconsistent update). Similarly, developers some-
times only update a comment without its associated code (an inconsistent update). The relationship of
such comment update practices and software bugs has never been explored empirically. While some
(in)consistent updates might be harmless, software engineering folklore warns of the risks of incon-
sistent updates between code and comments, because these updates are likely to lead to out-of-date
comments, which in turn might mislead developers and cause the introduction of bugs in the future. In
this paper, we study comment update practices in three large open-source systems written in C (FreeBSD
and PostgreSQL) and Java (Eclipse). We find that these practices can better explain and predict future
bugs than other indicators like the number of prior bugs or changes. Our findings suggest that inconsis-
tent changes are not necessarily correlated with more bugs. Instead, a change in which a function and its
comment are suddenly updated inconsistently, whereas they are usually updated consistently (or vice
versa), is risky (high probability of introducing a bug) and should be reviewed carefully by practitioners.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Source code comments play a central and important role in
understanding legacy systems. Comments are often the only form
of documentation available for a system, explaining algorithms,
informally specifying constraints like pre- and post-conditions, or
warning developers of the peculiarities of complex code (Woodfield
et al., 1981). Such documentation is crucial to avoid that develop-
ers lose grasp of the system as it ages and evolves (Brooks, 1995;
Parnas, 1994).

When changing the source code, developers either update the
associated comments (a “consistent update”) or not (an “inconsis-
tent update”). Updating a comment without the associated code
(up to 50% of the comment changes; Fluri et al., 2007) can also
be considered as an inconsistent update. The ill-effects of incon-
sistent updates between code and comments are often noted as
anecdotes by researchers and practitioners. An example of such
anecdotes is the change comment attached to change #27068 on
October 15, 2007 in the PostgreSQL project (we highlight in bold
the most relevant part):

“Fix pg wchar table[] to match revised ordering of the encoding ID
enum. Add some comments so hopefully the next poor sod doesn’t

∗ Corresponding author. Tel.: +1 613 533 6802; fax: +1 613 533 6513.
E-mail addresses: walid@cs.queensu.ca (W.M. Ibrahim), nicbet@cs.queensu.ca

(N. Bettenburg), bram@cs.queensu.ca (B. Adams), ahmed@cs.queensu.ca
(A.E. Hassan).

fall into the same trap. (Wrong comments are worse than none
at all. . .)”

Siy and Votta (2001) made the same observation during one of
their case studies, and noted:

“According to most developers we talked to, once they encounter
an inconsistent comment, they lose confidence in the reliability of
the rest of the comments [. . .] and they ignore the remainder of the
comments”

Indeed, inconsistent updates can be critical, as they likely
introduce out-of-date comments, which in turn might mislead
developers and lead to bugs in the future. For example, a recent
manual analysis of the bug reports for the FreeBSD project found
sixty bugs that are due to out-of-date comments (Tan et al.,
2007). However, Fluri et al. (2007) found that API (Application
Programming Interface) changes, although they impact count-
less other developers, are typically not commented until later
revisions.

While prior research has empirically demonstrated the nega-
tive impact of code churn and prior bugs on future code quality,
for example in the form of bugs, little is known about the
impact of comment update practices. Sundbakken (2001) found
that the average number of comment lines per C++ class is
a good indicator of source code maintainability, yet it is not
clear how this relates to comment update practices. While some
(in)consistent updates might be harmless (or even expected), oth-
ers might lead to out-of-date comments, and hence possibly to
bugs.

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.09.019

dx.doi.org/10.1016/j.jss.2011.09.019
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:walid@cs.queensu.ca
mailto:nicbet@cs.queensu.ca
mailto:bram@cs.queensu.ca
mailto:ahmed@cs.queensu.ca
dx.doi.org/10.1016/j.jss.2011.09.019

2294 W.M. Ibrahim et al. / The Journal of Systems and Software 85 (2012) 2293– 2304

In this paper, we study comment update practices in three large
open-source systems written in C (FreeBSD and PostgreSQL) and
Java (Eclipse) to determine the impact of comment update practices
on future bugs. We refine two traditional bug prediction mod-
els with information about the comment update practices of the
three systems (mined from the source code repositories) to study
whether comment update practices are able to explain and predict
future bugs. We indeed find a strong relation between comment
update practices and future bugs. Closer analysis of our bug mod-
els shows that a deviation in the common update practices for a
particular function (i.e., the function and its comment are always
consistently updated, until suddenly an inconsistent update occurs,
or vice versa) is a risk that practitioners must review carefully.

The main contributions of this paper are as follows:

• We empirically study the evolution of comment update prac-
tices in three large, long-lived, open-source systems (FreeBSD,
PostgreSQL and Eclipse).

• We establish an empirical link between comment update prac-
tices and future bugs.

Overview of the paper: Section 2 provides the necessary back-
ground and related work on comments and bug prediction.
Section 3 introduces the comment update practices considered in
our study, whereas Section 4 explains how we extract the comment
update practices from source code repositories. Section 5 studies
the distribution over time of comment update practices and future
bugs, followed by an exploration of the relation between the com-
ment update practices and bugs in Section 6. Section 7 discusses our
findings. Section 8 elaborates on possible threats to the validity of
our findings, and Section 9 concludes this work.

2. Background and related work

This section discusses typical use case scenarios of source code
comments, and presents related work on the evolution of source
code comments and on code quality analysis.

2.1. The use of comments in source code

The most widely-known use of source code comments is to doc-
ument developer knowledge and assumptions about the source
code. A survey of software maintainers done by de Souza et al.
(2005) finds that developers use comments as a key element to
understand source code. Similarly, Nurvitadhi et al. (2003) report
on the significant impact of code comments on improving program
understanding among students. Both studies highlight the impor-
tant and critical role of comments for software development and
maintenance.

Recent studies show that comments are also used for other
purposes beyond documenting the knowledge of developers. Ying
et al. (2005) observed that commercial developers use comments to
communicate with colleagues through messages such as “TODO” or
“FIXME” and to address code-related questions from specific team
members. Storey et al. (2008) report similar findings through an
online survey on a larger, more varied population of developers
working on different types of projects. These findings demonstrate
the extensive use of source code comments for collaboration and
communication throughout the software development process.

A work that is closer to ours is by Tan et al. (2007), who use
natural language processing techniques to automatically identify
and extract locking-related programming rules from comments.
Tan et al. then analyze the source code to locate deviations from
these extracted rules. This analysis locates current bugs in the Linux
kernel code based on inconsistencies between source code and

comments, whereas we study the impact of inconsistent comment
updates on future bugs in the whole software system, not just the
commented code snippet.

Sundbakken (2001) performed an empirical study to identify the
major indicators of maintainability of open-source C++ software
systems. Although the total number of comment lines is not a good
indicator, the average number of comment lines per C++ class is a
major indicator of maintainability, because it includes information
about the spread of comments across all classes. This work differs
from our work in multiple ways. Instead of measuring comments in
software releases to analyze their role in the ability of developers to
maintain source code, we consider the changes in between releases
to identify whether (in)consistent updates to comments are related
with future bugs.

2.2. Updating code comments

The work most closely related to this paper is that on co-
evolution of comments and source code by Fluri et al. (2007). The
authors perform a fine-grained, syntax tree-level analysis of how
comments evolve over time. Based on empirical analysis of eight
open-source and commercial systems, the authors find that com-
ments and source code grow similarly (normalized for size) and
that 51–69% of all comment changes were driven by source code
changes, usually in the same transaction to the version control sys-
tem. Our study builds on the latter finding, yet analyzes comments
at the function-level, not statement-level. Instead of focusing on
the quality of comments, we try to find an empirical link between
comment update practices and the quality of a software system, in
terms of future bugs.

Marin (2005) shows that developers are more likely to update
the comments of well-commented code. Developers are also more
likely to update comments for large and complex changes. Simi-
lar results were found by Malik et al. (2008), who built a model to
predict the likelihood of updating a comment. Their model is influ-
enced in particular by the complexity of the performed change, the
time of the change, and developer characteristics. The fact that the
complexity of a function is a good indicator for the appearance of
bugs (Herraiz et al., 2007) suggests that updating a comment (or
missing to do so) is likely to lead to future bugs.

Arafat and Riehle (2009) found that commenting source code is
an important practice in open-source development. They studied
the density of comments in source code changes, i.e., the proportion
of new comment lines in a source code change, in more than 5000
open-source systems. Small changes turn out to have the highest
comment density (>60% for 1-line changes). Larger changes have
ever smaller density, asymptotically approaching 19% (1 comment
line per 5 code lines). Comment density is independent of project
and team size, but depends on the programming language.

Finally, Siy and Votta (2001) found that updating comments is
often a major priority for companies. More than 28% of all issues
identified during code inspection are related to documentation
problems. In particular, missing or outdated comments, together
with incorrect comment layout and typos in the comments, repre-
sent the main source of documentation issues. Furthermore, almost
half of the source code lines that are changed or added in response
to the inspection results are comments.

2.3. Bug prediction

Bug prediction models play an important role in the priori-
tization of testing and code inspection efforts. For example, if a
prediction model determines that a particular component will see
a significant increase in error-proneness, managers can react by
allocating more testing and inspection efforts, instead of having to
wait for bug reports from clients after release (Arisholm and Briand,

Download English Version:

https://daneshyari.com/en/article/10343175

Download Persian Version:

https://daneshyari.com/article/10343175

Daneshyari.com

https://daneshyari.com/en/article/10343175
https://daneshyari.com/article/10343175
https://daneshyari.com

